向量空间的Cayley子空间和图

IF 0.5 Q3 MATHEMATICS
G. Kalaimurugan, S. Gopinath, T. Tamizh Chelvam
{"title":"向量空间的Cayley子空间和图","authors":"G. Kalaimurugan, S. Gopinath, T. Tamizh Chelvam","doi":"10.24330/ieja.1195466","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{V}$ be a finite dimensional vector space over the field $\\mathbb{F}$. Let $S(\\mathbb{V})$ be the set of all subspaces of $\\mathbb{V}$ and $\\mathbb{A}\\subseteq S^*(\\mathbb{V})=S(\\mathbb{V})\\backslash\\{0\\}.$ In this paper, we define the Cayley subspace sum graph of $\\mathbb{V},$ denoted by Cay$(S^*(\\mathbb{V}),\\mathbb{A}), $ as the simple undirected graph with vertex set $S^*(\\mathbb{V})$ and two distinct vertices $X$ and $Y$ are adjacent if $X+Z=Y$ or $Y+Z=X$ for some $Z\\in \\mathbb{A}$. Having defined the Cayley subspace sum graph, we study about the connectedness, diameter and girth of several classes of Cayley subspace sum graphs Cay$(S^*(\\mathbb{V}), \\mathbb{A})$ for a finite dimensional vector space $\\mathbb{V}$ and $\\mathbb{A}\\subseteq S^*(\\mathbb{V})=S(\\mathbb{V})\\backslash\\{0\\}.$","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cayley subspace sum graph of vector spaces\",\"authors\":\"G. Kalaimurugan, S. Gopinath, T. Tamizh Chelvam\",\"doi\":\"10.24330/ieja.1195466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbb{V}$ be a finite dimensional vector space over the field $\\\\mathbb{F}$. Let $S(\\\\mathbb{V})$ be the set of all subspaces of $\\\\mathbb{V}$ and $\\\\mathbb{A}\\\\subseteq S^*(\\\\mathbb{V})=S(\\\\mathbb{V})\\\\backslash\\\\{0\\\\}.$ In this paper, we define the Cayley subspace sum graph of $\\\\mathbb{V},$ denoted by Cay$(S^*(\\\\mathbb{V}),\\\\mathbb{A}), $ as the simple undirected graph with vertex set $S^*(\\\\mathbb{V})$ and two distinct vertices $X$ and $Y$ are adjacent if $X+Z=Y$ or $Y+Z=X$ for some $Z\\\\in \\\\mathbb{A}$. Having defined the Cayley subspace sum graph, we study about the connectedness, diameter and girth of several classes of Cayley subspace sum graphs Cay$(S^*(\\\\mathbb{V}), \\\\mathbb{A})$ for a finite dimensional vector space $\\\\mathbb{V}$ and $\\\\mathbb{A}\\\\subseteq S^*(\\\\mathbb{V})=S(\\\\mathbb{V})\\\\backslash\\\\{0\\\\}.$\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1195466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1195466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$\mathbb{V}$是域$\mathbb{F}$上的有限维向量空间。设$S(\mathbb{V})$是$\mathbb{V}$和$\mathbb{A}\substeq S^*(\mathbb{V})=S(\mathbb{V{)\反斜杠\{0\}的所有子空间的集合。$在本文中,我们定义了$\mathbb{V},$的Cayley子空间和图,用Cay$(S^*(\mathbb{V}),\mathbb}A})表示,$是一个简单的无向图,其顶点集为$S^*(\athbb{V}。在定义了Cayley子空间和图后,我们研究了有限维向量空间$\mathbb{V}$和$\mathbb{A}\substeqS^*(\mathbb{V})=S(\mathbb{V})\反斜杠的几类Cayley个子空间和图Cay$(S^*),\mathbb(A})$的连通性、直径和周长$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cayley subspace sum graph of vector spaces
Let $\mathbb{V}$ be a finite dimensional vector space over the field $\mathbb{F}$. Let $S(\mathbb{V})$ be the set of all subspaces of $\mathbb{V}$ and $\mathbb{A}\subseteq S^*(\mathbb{V})=S(\mathbb{V})\backslash\{0\}.$ In this paper, we define the Cayley subspace sum graph of $\mathbb{V},$ denoted by Cay$(S^*(\mathbb{V}),\mathbb{A}), $ as the simple undirected graph with vertex set $S^*(\mathbb{V})$ and two distinct vertices $X$ and $Y$ are adjacent if $X+Z=Y$ or $Y+Z=X$ for some $Z\in \mathbb{A}$. Having defined the Cayley subspace sum graph, we study about the connectedness, diameter and girth of several classes of Cayley subspace sum graphs Cay$(S^*(\mathbb{V}), \mathbb{A})$ for a finite dimensional vector space $\mathbb{V}$ and $\mathbb{A}\subseteq S^*(\mathbb{V})=S(\mathbb{V})\backslash\{0\}.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信