{"title":"向量空间的Cayley子空间和图","authors":"G. Kalaimurugan, S. Gopinath, T. Tamizh Chelvam","doi":"10.24330/ieja.1195466","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{V}$ be a finite dimensional vector space over the field $\\mathbb{F}$. Let $S(\\mathbb{V})$ be the set of all subspaces of $\\mathbb{V}$ and $\\mathbb{A}\\subseteq S^*(\\mathbb{V})=S(\\mathbb{V})\\backslash\\{0\\}.$ In this paper, we define the Cayley subspace sum graph of $\\mathbb{V},$ denoted by Cay$(S^*(\\mathbb{V}),\\mathbb{A}), $ as the simple undirected graph with vertex set $S^*(\\mathbb{V})$ and two distinct vertices $X$ and $Y$ are adjacent if $X+Z=Y$ or $Y+Z=X$ for some $Z\\in \\mathbb{A}$. Having defined the Cayley subspace sum graph, we study about the connectedness, diameter and girth of several classes of Cayley subspace sum graphs Cay$(S^*(\\mathbb{V}), \\mathbb{A})$ for a finite dimensional vector space $\\mathbb{V}$ and $\\mathbb{A}\\subseteq S^*(\\mathbb{V})=S(\\mathbb{V})\\backslash\\{0\\}.$","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cayley subspace sum graph of vector spaces\",\"authors\":\"G. Kalaimurugan, S. Gopinath, T. Tamizh Chelvam\",\"doi\":\"10.24330/ieja.1195466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbb{V}$ be a finite dimensional vector space over the field $\\\\mathbb{F}$. Let $S(\\\\mathbb{V})$ be the set of all subspaces of $\\\\mathbb{V}$ and $\\\\mathbb{A}\\\\subseteq S^*(\\\\mathbb{V})=S(\\\\mathbb{V})\\\\backslash\\\\{0\\\\}.$ In this paper, we define the Cayley subspace sum graph of $\\\\mathbb{V},$ denoted by Cay$(S^*(\\\\mathbb{V}),\\\\mathbb{A}), $ as the simple undirected graph with vertex set $S^*(\\\\mathbb{V})$ and two distinct vertices $X$ and $Y$ are adjacent if $X+Z=Y$ or $Y+Z=X$ for some $Z\\\\in \\\\mathbb{A}$. Having defined the Cayley subspace sum graph, we study about the connectedness, diameter and girth of several classes of Cayley subspace sum graphs Cay$(S^*(\\\\mathbb{V}), \\\\mathbb{A})$ for a finite dimensional vector space $\\\\mathbb{V}$ and $\\\\mathbb{A}\\\\subseteq S^*(\\\\mathbb{V})=S(\\\\mathbb{V})\\\\backslash\\\\{0\\\\}.$\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1195466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1195466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let $\mathbb{V}$ be a finite dimensional vector space over the field $\mathbb{F}$. Let $S(\mathbb{V})$ be the set of all subspaces of $\mathbb{V}$ and $\mathbb{A}\subseteq S^*(\mathbb{V})=S(\mathbb{V})\backslash\{0\}.$ In this paper, we define the Cayley subspace sum graph of $\mathbb{V},$ denoted by Cay$(S^*(\mathbb{V}),\mathbb{A}), $ as the simple undirected graph with vertex set $S^*(\mathbb{V})$ and two distinct vertices $X$ and $Y$ are adjacent if $X+Z=Y$ or $Y+Z=X$ for some $Z\in \mathbb{A}$. Having defined the Cayley subspace sum graph, we study about the connectedness, diameter and girth of several classes of Cayley subspace sum graphs Cay$(S^*(\mathbb{V}), \mathbb{A})$ for a finite dimensional vector space $\mathbb{V}$ and $\mathbb{A}\subseteq S^*(\mathbb{V})=S(\mathbb{V})\backslash\{0\}.$
期刊介绍:
The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.