高静低动刚度正交六自由度平台的隔震

IF 2.6 4区 工程技术 Q2 MECHANICS
Rong-Biao Hao, Ze-Qi Lu, H. Ding, Liqun Chen
{"title":"高静低动刚度正交六自由度平台的隔震","authors":"Rong-Biao Hao, Ze-Qi Lu, H. Ding, Liqun Chen","doi":"10.1115/1.4062886","DOIUrl":null,"url":null,"abstract":"\n A novel approach to enhance the shock vibration environment of multi-directions using a high-static-low-dynamic stiffness supported orthogonal six degree-of-freedoms (DOFs) nonlinear vibration isolation (OSNVI) system is presented in this paper. By combining spring positive stiffness and magnetic negative stiffness, the proposed system achieves high-static-low-dynamic stiffness. Under the multi-directions half-sine vibration, the dynamic equation of the OSNVI is obtained. Both dynamic and static analysis methods are utilized to explore the effect of various parameters on the shock isolation performance of the OSNVI from both the time and frequency domains. The results indicate that the proposed OSNVI can efficiently suppress multi-direction shocks at the cost of only one second. Although a nonlinear jump is usually not expected, the nonlinear jump of the OSNVI could improve the load capacity by increasing the spring stiffness without changing the shock isolation frequency band. Finally, a shock experiment is employed through a three-axis shaker platform to validate the shock isolation performance of the orthogonal six-DOFs nonlinear vibration isolator. The proposed OSNVI provides a promising approach to suppress the multi-directional shock vibrations.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Shock Isolation of an Orthogonal Six DOFs Platform with High-Static-Low-Dynamic Stiffness\",\"authors\":\"Rong-Biao Hao, Ze-Qi Lu, H. Ding, Liqun Chen\",\"doi\":\"10.1115/1.4062886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A novel approach to enhance the shock vibration environment of multi-directions using a high-static-low-dynamic stiffness supported orthogonal six degree-of-freedoms (DOFs) nonlinear vibration isolation (OSNVI) system is presented in this paper. By combining spring positive stiffness and magnetic negative stiffness, the proposed system achieves high-static-low-dynamic stiffness. Under the multi-directions half-sine vibration, the dynamic equation of the OSNVI is obtained. Both dynamic and static analysis methods are utilized to explore the effect of various parameters on the shock isolation performance of the OSNVI from both the time and frequency domains. The results indicate that the proposed OSNVI can efficiently suppress multi-direction shocks at the cost of only one second. Although a nonlinear jump is usually not expected, the nonlinear jump of the OSNVI could improve the load capacity by increasing the spring stiffness without changing the shock isolation frequency band. Finally, a shock experiment is employed through a three-axis shaker platform to validate the shock isolation performance of the orthogonal six-DOFs nonlinear vibration isolator. The proposed OSNVI provides a promising approach to suppress the multi-directional shock vibrations.\",\"PeriodicalId\":54880,\"journal\":{\"name\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062886\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062886","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用高静态低动态刚度支撑的正交六自由度非线性隔振系统来增强多方向冲击振动环境的新方法。该系统将弹簧正刚度和磁负刚度相结合,实现了高静态低动态刚度。在多方向半正弦振动下,得到了OSNVI的动力学方程。采用动态和静态分析方法,从时域和频域两个角度探讨了各种参数对OSNVI隔振性能的影响。结果表明,所提出的OSNVI可以有效地抑制多方向冲击,只需1秒的时间。虽然通常不会出现非线性跳跃,但OSNVI的非线性跳跃可以在不改变隔振频带的情况下通过增加弹簧刚度来提高承载能力。最后,通过三轴振动台进行了冲击实验,验证了正交六自由度非线性隔振器的隔振性能。所提出的OSNVI为抑制多向冲击振动提供了一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shock Isolation of an Orthogonal Six DOFs Platform with High-Static-Low-Dynamic Stiffness
A novel approach to enhance the shock vibration environment of multi-directions using a high-static-low-dynamic stiffness supported orthogonal six degree-of-freedoms (DOFs) nonlinear vibration isolation (OSNVI) system is presented in this paper. By combining spring positive stiffness and magnetic negative stiffness, the proposed system achieves high-static-low-dynamic stiffness. Under the multi-directions half-sine vibration, the dynamic equation of the OSNVI is obtained. Both dynamic and static analysis methods are utilized to explore the effect of various parameters on the shock isolation performance of the OSNVI from both the time and frequency domains. The results indicate that the proposed OSNVI can efficiently suppress multi-direction shocks at the cost of only one second. Although a nonlinear jump is usually not expected, the nonlinear jump of the OSNVI could improve the load capacity by increasing the spring stiffness without changing the shock isolation frequency band. Finally, a shock experiment is employed through a three-axis shaker platform to validate the shock isolation performance of the orthogonal six-DOFs nonlinear vibration isolator. The proposed OSNVI provides a promising approach to suppress the multi-directional shock vibrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.80%
发文量
95
审稿时长
5.8 months
期刊介绍: All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信