{"title":"奇异Finsler度量中经典型哈密顿系统的制动轨道","authors":"Dario Corona, F. Giannoni","doi":"10.1515/anona-2022-0222","DOIUrl":null,"url":null,"abstract":"Abstract We consider Hamiltonian functions of the classical type, namely, even and convex with respect to the generalized momenta. A brake orbit is a periodic solution of Hamilton’s equations such that the generalized momenta are zero on two different points. Under mild assumptions, this paper reduces the multiplicity problem of the brake orbits for a Hamiltonian function of the classical type to the multiplicity problem of orthogonal geodesic chords in a concave Finslerian manifold with boundary. This paper will be used for a generalization of a Seifert’s conjecture about the multiplicity of brake orbits to Hamiltonian functions of the classical type.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1223 - 1248"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Brake orbits for Hamiltonian systems of the classical type via geodesics in singular Finsler metrics\",\"authors\":\"Dario Corona, F. Giannoni\",\"doi\":\"10.1515/anona-2022-0222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider Hamiltonian functions of the classical type, namely, even and convex with respect to the generalized momenta. A brake orbit is a periodic solution of Hamilton’s equations such that the generalized momenta are zero on two different points. Under mild assumptions, this paper reduces the multiplicity problem of the brake orbits for a Hamiltonian function of the classical type to the multiplicity problem of orthogonal geodesic chords in a concave Finslerian manifold with boundary. This paper will be used for a generalization of a Seifert’s conjecture about the multiplicity of brake orbits to Hamiltonian functions of the classical type.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\"11 1\",\"pages\":\"1223 - 1248\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0222\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0222","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Brake orbits for Hamiltonian systems of the classical type via geodesics in singular Finsler metrics
Abstract We consider Hamiltonian functions of the classical type, namely, even and convex with respect to the generalized momenta. A brake orbit is a periodic solution of Hamilton’s equations such that the generalized momenta are zero on two different points. Under mild assumptions, this paper reduces the multiplicity problem of the brake orbits for a Hamiltonian function of the classical type to the multiplicity problem of orthogonal geodesic chords in a concave Finslerian manifold with boundary. This paper will be used for a generalization of a Seifert’s conjecture about the multiplicity of brake orbits to Hamiltonian functions of the classical type.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.