{"title":"某些超复系统诱导的算子","authors":"D. Alpay, Ilwoo Cho","doi":"10.7494/opmath.2023.43.3.275","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a family \\(\\{ \\mathbb{H}_{t}\\}_{t\\in\\mathbb{R}}\\) of rings of hypercomplex numbers, indexed by the real numbers, which contain both the quaternions and the split-quaternions. We consider natural Hilbert-space representations \\(\\{(\\mathbb{C}^{2},\\pi_{t})\\}_{t\\in\\mathbb{R}}\\) of the hypercomplex system \\(\\{ \\mathbb{H}_{t}\\}_{t\\in\\mathbb{R}}\\), and study the realizations \\(\\pi_{t}(h)\\) of hypercomplex numbers \\(h \\in \\mathbb{H}_{t}\\), as \\((2\\times 2)\\)-matrices acting on \\(\\mathbb{C}^{2}\\), for an arbitrarily fixed scale \\(t\\in\\mathbb{R}\\). Algebraic, operator-theoretic, spectral-analytic, and free-probabilistic properties of them are considered.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Operators induced by certain hypercomplex systems\",\"authors\":\"D. Alpay, Ilwoo Cho\",\"doi\":\"10.7494/opmath.2023.43.3.275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a family \\\\(\\\\{ \\\\mathbb{H}_{t}\\\\}_{t\\\\in\\\\mathbb{R}}\\\\) of rings of hypercomplex numbers, indexed by the real numbers, which contain both the quaternions and the split-quaternions. We consider natural Hilbert-space representations \\\\(\\\\{(\\\\mathbb{C}^{2},\\\\pi_{t})\\\\}_{t\\\\in\\\\mathbb{R}}\\\\) of the hypercomplex system \\\\(\\\\{ \\\\mathbb{H}_{t}\\\\}_{t\\\\in\\\\mathbb{R}}\\\\), and study the realizations \\\\(\\\\pi_{t}(h)\\\\) of hypercomplex numbers \\\\(h \\\\in \\\\mathbb{H}_{t}\\\\), as \\\\((2\\\\times 2)\\\\)-matrices acting on \\\\(\\\\mathbb{C}^{2}\\\\), for an arbitrarily fixed scale \\\\(t\\\\in\\\\mathbb{R}\\\\). Algebraic, operator-theoretic, spectral-analytic, and free-probabilistic properties of them are considered.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2023.43.3.275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.3.275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we consider a family \(\{ \mathbb{H}_{t}\}_{t\in\mathbb{R}}\) of rings of hypercomplex numbers, indexed by the real numbers, which contain both the quaternions and the split-quaternions. We consider natural Hilbert-space representations \(\{(\mathbb{C}^{2},\pi_{t})\}_{t\in\mathbb{R}}\) of the hypercomplex system \(\{ \mathbb{H}_{t}\}_{t\in\mathbb{R}}\), and study the realizations \(\pi_{t}(h)\) of hypercomplex numbers \(h \in \mathbb{H}_{t}\), as \((2\times 2)\)-matrices acting on \(\mathbb{C}^{2}\), for an arbitrarily fixed scale \(t\in\mathbb{R}\). Algebraic, operator-theoretic, spectral-analytic, and free-probabilistic properties of them are considered.