用于腰椎分析的形状-性能集成数字双胞胎

Xiwang He, Yiming Qiu, Xiaonan Lai, Zhonghai Li, Liming Shu, Wei Sun, Xueguan Song
{"title":"用于腰椎分析的形状-性能集成数字双胞胎","authors":"Xiwang He, Yiming Qiu, Xiaonan Lai, Zhonghai Li, Liming Shu, Wei Sun, Xueguan Song","doi":"10.12688/digitaltwin.17478.1","DOIUrl":null,"url":null,"abstract":"Background: With significant advancement and demand for digital transformation, the digital twin has been gaining increasing attention as it is capable of establishing real-time mapping between physical space and virtual space. In this work, a shape-performance integrated digital twin solution is presented to predict the real-time biomechanics of the lumbar spine during human movement. Methods: A finite element model (FEM) of the lumbar spine was firstly developed using computed tomography (CT) and constrained by the body movement which was calculated by the inverse kinematics algorithm. The Gaussian process regression was utilized to train the predicted results and create the digital twin of the lumbar spine in real-time. Finally, a three-dimensional virtual reality system was developed using Unity3D to display and record the real-time biomechanics performance of the lumbar spine during body movement. Results: The evaluation results presented an agreement (R-squared > 0.8) between the real-time prediction from digital twin and offline FEM prediction. Conclusions: This approach provides an effective method of real-time planning and warning in spine rehabilitation.","PeriodicalId":29831,"journal":{"name":"Digital Twin","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Towards a shape-performance integrated digital twin for lumbar spine analysis\",\"authors\":\"Xiwang He, Yiming Qiu, Xiaonan Lai, Zhonghai Li, Liming Shu, Wei Sun, Xueguan Song\",\"doi\":\"10.12688/digitaltwin.17478.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: With significant advancement and demand for digital transformation, the digital twin has been gaining increasing attention as it is capable of establishing real-time mapping between physical space and virtual space. In this work, a shape-performance integrated digital twin solution is presented to predict the real-time biomechanics of the lumbar spine during human movement. Methods: A finite element model (FEM) of the lumbar spine was firstly developed using computed tomography (CT) and constrained by the body movement which was calculated by the inverse kinematics algorithm. The Gaussian process regression was utilized to train the predicted results and create the digital twin of the lumbar spine in real-time. Finally, a three-dimensional virtual reality system was developed using Unity3D to display and record the real-time biomechanics performance of the lumbar spine during body movement. Results: The evaluation results presented an agreement (R-squared > 0.8) between the real-time prediction from digital twin and offline FEM prediction. Conclusions: This approach provides an effective method of real-time planning and warning in spine rehabilitation.\",\"PeriodicalId\":29831,\"journal\":{\"name\":\"Digital Twin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Twin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/digitaltwin.17478.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Twin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/digitaltwin.17478.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

背景:随着数字化转型的显著进步和需求,数字孪生能够在物理空间和虚拟空间之间建立实时映射,因此越来越受到关注。在这项工作中,提出了一种形状-性能集成数字孪生解决方案,用于预测人类运动过程中腰椎的实时生物力学。方法:首先利用计算机断层扫描(CT)建立了腰椎有限元模型,并利用逆运动学算法计算了受身体运动约束的腰椎有限元。高斯过程回归用于训练预测结果,并实时创建腰椎数字孪生。最后,利用Unity3D开发了一个三维虚拟现实系统,实时显示和记录腰椎在身体运动过程中的生物力学性能。结果:评估结果表明,数字孪生的实时预测与离线有限元预测之间存在一致性(R平方>0.8)。结论:该方法为脊柱康复提供了一种有效的实时规划和预警方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a shape-performance integrated digital twin for lumbar spine analysis
Background: With significant advancement and demand for digital transformation, the digital twin has been gaining increasing attention as it is capable of establishing real-time mapping between physical space and virtual space. In this work, a shape-performance integrated digital twin solution is presented to predict the real-time biomechanics of the lumbar spine during human movement. Methods: A finite element model (FEM) of the lumbar spine was firstly developed using computed tomography (CT) and constrained by the body movement which was calculated by the inverse kinematics algorithm. The Gaussian process regression was utilized to train the predicted results and create the digital twin of the lumbar spine in real-time. Finally, a three-dimensional virtual reality system was developed using Unity3D to display and record the real-time biomechanics performance of the lumbar spine during body movement. Results: The evaluation results presented an agreement (R-squared > 0.8) between the real-time prediction from digital twin and offline FEM prediction. Conclusions: This approach provides an effective method of real-time planning and warning in spine rehabilitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Twin
Digital Twin digital twin technologies-
自引率
0.00%
发文量
0
期刊介绍: Digital Twin is a rapid multidisciplinary open access publishing platform for state-of-the-art, basic, scientific and applied research on digital twin technologies. Digital Twin covers all areas related digital twin technologies, including broad fields such as smart manufacturing, civil and industrial engineering, healthcare, agriculture, and many others. The platform is open to submissions from researchers, practitioners and experts, and all articles will benefit from open peer review.  The aim of Digital Twin is to advance the state-of-the-art in digital twin research and encourage innovation by highlighting efficient, robust and sustainable multidisciplinary applications across a variety of fields. Challenges can be addressed using theoretical, methodological, and technological approaches. The scope of Digital Twin includes, but is not limited to, the following areas:  ● Digital twin concepts, architecture, and frameworks ● Digital twin theory and method ● Digital twin key technologies and tools ● Digital twin applications and case studies ● Digital twin implementation ● Digital twin services ● Digital twin security ● Digital twin standards Digital twin also focuses on applications within and across broad sectors including: ● Smart manufacturing ● Aviation and aerospace ● Smart cities and construction ● Healthcare and medicine ● Robotics ● Shipping, vehicles and railways ● Industrial engineering and engineering management ● Agriculture ● Mining ● Power, energy and environment Digital Twin features a range of article types including research articles, case studies, method articles, study protocols, software tools, systematic reviews, data notes, brief reports, and opinion articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信