Blackstock热粘性流动模型的渐近行为

IF 1.2 2区 数学 Q1 MATHEMATICS
Wenhui Chen, R. Ikehata, A. Palmieri
{"title":"Blackstock热粘性流动模型的渐近行为","authors":"Wenhui Chen, R. Ikehata, A. Palmieri","doi":"10.1512/iumj.2023.72.9425","DOIUrl":null,"url":null,"abstract":"We study a fundamental model in nonlinear acoustics, precisely, the general Blackstock's model (that is, without Becker's assumption) in the whole space $\\mathbb{R}^n$. This model describes nonlinear acoustics in perfect gases under the irrotational flow. By means of the Fourier analysis we will derive $L^2$ estimates for the solution of the linear homogeneous problem and its derivatives. Then, we will apply these estimates to study three different topics: the optimality of the decay estimates in the case $n\\geqslant 5$ and the optimal growth rate for the $L^2$-norm of the solution for $n=3,4$; the singular limit problem in determining the first- and second-order profiles for the solution of the linear Blackstock's model with respect to the small thermal diffusivity; the proof of the existence of global (in time) small data Sobolev solutions with suitable regularity for a nonlinear Blackstock's model.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Asymptotic behaviors for Blackstock's model of thermoviscous flow\",\"authors\":\"Wenhui Chen, R. Ikehata, A. Palmieri\",\"doi\":\"10.1512/iumj.2023.72.9425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a fundamental model in nonlinear acoustics, precisely, the general Blackstock's model (that is, without Becker's assumption) in the whole space $\\\\mathbb{R}^n$. This model describes nonlinear acoustics in perfect gases under the irrotational flow. By means of the Fourier analysis we will derive $L^2$ estimates for the solution of the linear homogeneous problem and its derivatives. Then, we will apply these estimates to study three different topics: the optimality of the decay estimates in the case $n\\\\geqslant 5$ and the optimal growth rate for the $L^2$-norm of the solution for $n=3,4$; the singular limit problem in determining the first- and second-order profiles for the solution of the linear Blackstock's model with respect to the small thermal diffusivity; the proof of the existence of global (in time) small data Sobolev solutions with suitable regularity for a nonlinear Blackstock's model.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9425\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9425","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了非线性声学中的一个基本模型,确切地说,是整个空间$\mathbb{R}^n$中的一般Blackstock模型(也就是说,没有Becker的假设)。该模型描述了无旋流下理想气体中的非线性声学。通过傅立叶分析,我们将导出线性齐次问题及其导数的解的$L^2$估计。然后,我们将应用这些估计来研究三个不同的主题:在$n\geqslant 5$的情况下衰减估计的最优性和$n=3,4$的解的$L^2$范数的最优增长率;确定线性Blackstock模型关于小热扩散率的解的一阶和二阶轮廓时的奇异极限问题;证明了非线性Blackstock模型具有适当正则性的全局(实时)小数据Sobolev解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behaviors for Blackstock's model of thermoviscous flow
We study a fundamental model in nonlinear acoustics, precisely, the general Blackstock's model (that is, without Becker's assumption) in the whole space $\mathbb{R}^n$. This model describes nonlinear acoustics in perfect gases under the irrotational flow. By means of the Fourier analysis we will derive $L^2$ estimates for the solution of the linear homogeneous problem and its derivatives. Then, we will apply these estimates to study three different topics: the optimality of the decay estimates in the case $n\geqslant 5$ and the optimal growth rate for the $L^2$-norm of the solution for $n=3,4$; the singular limit problem in determining the first- and second-order profiles for the solution of the linear Blackstock's model with respect to the small thermal diffusivity; the proof of the existence of global (in time) small data Sobolev solutions with suitable regularity for a nonlinear Blackstock's model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信