Blackstock热粘性流动模型的渐近行为

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenhui Chen, R. Ikehata, A. Palmieri
{"title":"Blackstock热粘性流动模型的渐近行为","authors":"Wenhui Chen, R. Ikehata, A. Palmieri","doi":"10.1512/iumj.2023.72.9425","DOIUrl":null,"url":null,"abstract":"We study a fundamental model in nonlinear acoustics, precisely, the general Blackstock's model (that is, without Becker's assumption) in the whole space $\\mathbb{R}^n$. This model describes nonlinear acoustics in perfect gases under the irrotational flow. By means of the Fourier analysis we will derive $L^2$ estimates for the solution of the linear homogeneous problem and its derivatives. Then, we will apply these estimates to study three different topics: the optimality of the decay estimates in the case $n\\geqslant 5$ and the optimal growth rate for the $L^2$-norm of the solution for $n=3,4$; the singular limit problem in determining the first- and second-order profiles for the solution of the linear Blackstock's model with respect to the small thermal diffusivity; the proof of the existence of global (in time) small data Sobolev solutions with suitable regularity for a nonlinear Blackstock's model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Asymptotic behaviors for Blackstock's model of thermoviscous flow\",\"authors\":\"Wenhui Chen, R. Ikehata, A. Palmieri\",\"doi\":\"10.1512/iumj.2023.72.9425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a fundamental model in nonlinear acoustics, precisely, the general Blackstock's model (that is, without Becker's assumption) in the whole space $\\\\mathbb{R}^n$. This model describes nonlinear acoustics in perfect gases under the irrotational flow. By means of the Fourier analysis we will derive $L^2$ estimates for the solution of the linear homogeneous problem and its derivatives. Then, we will apply these estimates to study three different topics: the optimality of the decay estimates in the case $n\\\\geqslant 5$ and the optimal growth rate for the $L^2$-norm of the solution for $n=3,4$; the singular limit problem in determining the first- and second-order profiles for the solution of the linear Blackstock's model with respect to the small thermal diffusivity; the proof of the existence of global (in time) small data Sobolev solutions with suitable regularity for a nonlinear Blackstock's model.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9425\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9425","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了非线性声学中的一个基本模型,确切地说,是整个空间$\mathbb{R}^n$中的一般Blackstock模型(也就是说,没有Becker的假设)。该模型描述了无旋流下理想气体中的非线性声学。通过傅立叶分析,我们将导出线性齐次问题及其导数的解的$L^2$估计。然后,我们将应用这些估计来研究三个不同的主题:在$n\geqslant 5$的情况下衰减估计的最优性和$n=3,4$的解的$L^2$范数的最优增长率;确定线性Blackstock模型关于小热扩散率的解的一阶和二阶轮廓时的奇异极限问题;证明了非线性Blackstock模型具有适当正则性的全局(实时)小数据Sobolev解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behaviors for Blackstock's model of thermoviscous flow
We study a fundamental model in nonlinear acoustics, precisely, the general Blackstock's model (that is, without Becker's assumption) in the whole space $\mathbb{R}^n$. This model describes nonlinear acoustics in perfect gases under the irrotational flow. By means of the Fourier analysis we will derive $L^2$ estimates for the solution of the linear homogeneous problem and its derivatives. Then, we will apply these estimates to study three different topics: the optimality of the decay estimates in the case $n\geqslant 5$ and the optimal growth rate for the $L^2$-norm of the solution for $n=3,4$; the singular limit problem in determining the first- and second-order profiles for the solution of the linear Blackstock's model with respect to the small thermal diffusivity; the proof of the existence of global (in time) small data Sobolev solutions with suitable regularity for a nonlinear Blackstock's model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信