{"title":"Blackstock热粘性流动模型的渐近行为","authors":"Wenhui Chen, R. Ikehata, A. Palmieri","doi":"10.1512/iumj.2023.72.9425","DOIUrl":null,"url":null,"abstract":"We study a fundamental model in nonlinear acoustics, precisely, the general Blackstock's model (that is, without Becker's assumption) in the whole space $\\mathbb{R}^n$. This model describes nonlinear acoustics in perfect gases under the irrotational flow. By means of the Fourier analysis we will derive $L^2$ estimates for the solution of the linear homogeneous problem and its derivatives. Then, we will apply these estimates to study three different topics: the optimality of the decay estimates in the case $n\\geqslant 5$ and the optimal growth rate for the $L^2$-norm of the solution for $n=3,4$; the singular limit problem in determining the first- and second-order profiles for the solution of the linear Blackstock's model with respect to the small thermal diffusivity; the proof of the existence of global (in time) small data Sobolev solutions with suitable regularity for a nonlinear Blackstock's model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Asymptotic behaviors for Blackstock's model of thermoviscous flow\",\"authors\":\"Wenhui Chen, R. Ikehata, A. Palmieri\",\"doi\":\"10.1512/iumj.2023.72.9425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a fundamental model in nonlinear acoustics, precisely, the general Blackstock's model (that is, without Becker's assumption) in the whole space $\\\\mathbb{R}^n$. This model describes nonlinear acoustics in perfect gases under the irrotational flow. By means of the Fourier analysis we will derive $L^2$ estimates for the solution of the linear homogeneous problem and its derivatives. Then, we will apply these estimates to study three different topics: the optimality of the decay estimates in the case $n\\\\geqslant 5$ and the optimal growth rate for the $L^2$-norm of the solution for $n=3,4$; the singular limit problem in determining the first- and second-order profiles for the solution of the linear Blackstock's model with respect to the small thermal diffusivity; the proof of the existence of global (in time) small data Sobolev solutions with suitable regularity for a nonlinear Blackstock's model.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9425\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9425","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Asymptotic behaviors for Blackstock's model of thermoviscous flow
We study a fundamental model in nonlinear acoustics, precisely, the general Blackstock's model (that is, without Becker's assumption) in the whole space $\mathbb{R}^n$. This model describes nonlinear acoustics in perfect gases under the irrotational flow. By means of the Fourier analysis we will derive $L^2$ estimates for the solution of the linear homogeneous problem and its derivatives. Then, we will apply these estimates to study three different topics: the optimality of the decay estimates in the case $n\geqslant 5$ and the optimal growth rate for the $L^2$-norm of the solution for $n=3,4$; the singular limit problem in determining the first- and second-order profiles for the solution of the linear Blackstock's model with respect to the small thermal diffusivity; the proof of the existence of global (in time) small data Sobolev solutions with suitable regularity for a nonlinear Blackstock's model.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.