关于抛物型Hecke代数上Hecke多项式的分解

IF 0.3 4区 数学 Q4 MATHEMATICS
Claudius Heyer
{"title":"关于抛物型Hecke代数上Hecke多项式的分解","authors":"Claudius Heyer","doi":"10.5802/jtnb.1235","DOIUrl":null,"url":null,"abstract":"We generalize a classical result of Andrianov on the decomposition of Hecke polynomials. Let F be a non-archimedean local fied. For every connected reductive group G, we give a criterion for when a polynomial with coefficients in the spherical parahoric Hecke algebra of G(F) decomposes over a parabolic Hecke algebra associated with a non-obtuse parabolic subgroup of G. We classify the non-obtuse parabolics. This then shows that our decomposition theorem covers all the classical cases due to Andrianov and Gritsenko. We also obtain new cases when the relative root system of G contains factors of types E6 or E7.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Decomposition of Hecke Polynomials over Parabolic Hecke Algebras\",\"authors\":\"Claudius Heyer\",\"doi\":\"10.5802/jtnb.1235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize a classical result of Andrianov on the decomposition of Hecke polynomials. Let F be a non-archimedean local fied. For every connected reductive group G, we give a criterion for when a polynomial with coefficients in the spherical parahoric Hecke algebra of G(F) decomposes over a parabolic Hecke algebra associated with a non-obtuse parabolic subgroup of G. We classify the non-obtuse parabolics. This then shows that our decomposition theorem covers all the classical cases due to Andrianov and Gritsenko. We also obtain new cases when the relative root system of G contains factors of types E6 or E7.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1235\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1235","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们推广了Andrianov关于Hecke多项式分解的一个经典结果。设F是非阿基米德局部化的。对于每一个连通的归约群G,我们给出了G(F)的球面准水平Hecke代数中的系数多项式何时在与G的非钝角抛物子群相关的抛物Hecke代数学上分解的一个准则。我们对非钝角抛物面进行了分类。这表明我们的分解定理涵盖了Andrianov和Gritsenko的所有经典情况。当G的相对根系包含E6或E7型因子时,我们也获得了新的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Decomposition of Hecke Polynomials over Parabolic Hecke Algebras
We generalize a classical result of Andrianov on the decomposition of Hecke polynomials. Let F be a non-archimedean local fied. For every connected reductive group G, we give a criterion for when a polynomial with coefficients in the spherical parahoric Hecke algebra of G(F) decomposes over a parabolic Hecke algebra associated with a non-obtuse parabolic subgroup of G. We classify the non-obtuse parabolics. This then shows that our decomposition theorem covers all the classical cases due to Andrianov and Gritsenko. We also obtain new cases when the relative root system of G contains factors of types E6 or E7.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信