隐式接触动力学与Hamilton-Jacobi理论

IF 0.6 4区 数学 Q3 MATHEMATICS
Oğul Esen , Manuel Lainz Valcázar , Manuel de León , Cristina Sardón
{"title":"隐式接触动力学与Hamilton-Jacobi理论","authors":"Oğul Esen ,&nbsp;Manuel Lainz Valcázar ,&nbsp;Manuel de León ,&nbsp;Cristina Sardón","doi":"10.1016/j.difgeo.2023.102030","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce implicit Hamiltonian dynamics in the framework of contact geometry in two different ways: first, we introduce classical implicit Hamiltonian dynamics on a contact manifold, followed by evolution Hamiltonian dynamics. In the first case, implicit contact Hamiltonian dynamics is defined as a Legendrian submanifold of a tangent contact space, whilst the implicit evolution dynamic is understood as a Lagrangian submanifold of a certain symplectic space embedded into the tangent contact space. To conclude, we propose a geometric Hamilton-Jacobi theory for both of these formulations.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"90 ","pages":"Article 102030"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Implicit contact dynamics and Hamilton-Jacobi theory\",\"authors\":\"Oğul Esen ,&nbsp;Manuel Lainz Valcázar ,&nbsp;Manuel de León ,&nbsp;Cristina Sardón\",\"doi\":\"10.1016/j.difgeo.2023.102030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce implicit Hamiltonian dynamics in the framework of contact geometry in two different ways: first, we introduce classical implicit Hamiltonian dynamics on a contact manifold, followed by evolution Hamiltonian dynamics. In the first case, implicit contact Hamiltonian dynamics is defined as a Legendrian submanifold of a tangent contact space, whilst the implicit evolution dynamic is understood as a Lagrangian submanifold of a certain symplectic space embedded into the tangent contact space. To conclude, we propose a geometric Hamilton-Jacobi theory for both of these formulations.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"90 \",\"pages\":\"Article 102030\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523000566\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523000566","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

本文以两种不同的方式在接触几何的框架下引入隐式哈密顿动力学:首先,在接触流形上引入经典隐式哈密顿动力学,然后引入演化哈密顿动力学。在第一种情况下,隐式接触哈密顿动力学被定义为切接触空间的Legendrian子流形,而隐式演化动力学被理解为嵌入切接触空间的某个辛空间的拉格朗日子流形。最后,我们为这两个公式提出了一个几何Hamilton-Jacobi理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implicit contact dynamics and Hamilton-Jacobi theory

In this paper, we introduce implicit Hamiltonian dynamics in the framework of contact geometry in two different ways: first, we introduce classical implicit Hamiltonian dynamics on a contact manifold, followed by evolution Hamiltonian dynamics. In the first case, implicit contact Hamiltonian dynamics is defined as a Legendrian submanifold of a tangent contact space, whilst the implicit evolution dynamic is understood as a Lagrangian submanifold of a certain symplectic space embedded into the tangent contact space. To conclude, we propose a geometric Hamilton-Jacobi theory for both of these formulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信