{"title":"基于Shearlet的结构感知滤波在高光谱和激光雷达数据分类中的应用","authors":"S. Jia, Z. Zhan, Meng Xu","doi":"10.34133/2021/9825415","DOIUrl":null,"url":null,"abstract":"The joint interpretation of hyperspectral images (HSIs) and light detection and ranging (LiDAR) data has developed rapidly in recent years due to continuously evolving image processing technology. Nowadays, most feature extraction methods are carried out by convolving the raw data with fixed-size filters, whereas the structural and texture information of objects in multiple scales cannot be sufficiently exploited. In this article, a shearlet-based structure-aware filtering approach, abbreviated as ShearSAF, is proposed for HSI and LiDAR feature extraction and classification. Specifically, superpixel-guided kernel principal component analysis (KPCA) is firstly adopted on raw HSIs to reduce the dimensions. Then, the KPCA-reduced HSI and LiDAR data are converted to the shearlet domain for texture and area feature extraction. In contrast, superpixel segmentation algorithm utilizes the raw HSI data to obtain the initial oversegmentation map. Subsequently, by utilizing a well-designed minimum merging cost that fully considers spectral (HSI and LiDAR data), texture, and area features, a region merging procedure is gradually conducted to produce a final merging map. Further, a scale map that locally indicates the filter size is achieved by calculating the edge distance. Finally, the KPCA-reduced HSI and LiDAR data are convolved with the locally adaptive filters for feature extraction, and a random forest (RF) classifier is thus adopted for classification. The effectiveness of our ShearSAF approach is verified on three real-world datasets, and the results show that the performance of ShearSAF can achieve an accuracy higher than that of comparison methods when exploiting small-size training sample problems. The codes of this work will be available at http://jiasen.tech/papers/ for the sake of reproducibility.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":"2021 1","pages":"1-25"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Shearlet-Based Structure-Aware Filtering for Hyperspectral and LiDAR Data Classification\",\"authors\":\"S. Jia, Z. Zhan, Meng Xu\",\"doi\":\"10.34133/2021/9825415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The joint interpretation of hyperspectral images (HSIs) and light detection and ranging (LiDAR) data has developed rapidly in recent years due to continuously evolving image processing technology. Nowadays, most feature extraction methods are carried out by convolving the raw data with fixed-size filters, whereas the structural and texture information of objects in multiple scales cannot be sufficiently exploited. In this article, a shearlet-based structure-aware filtering approach, abbreviated as ShearSAF, is proposed for HSI and LiDAR feature extraction and classification. Specifically, superpixel-guided kernel principal component analysis (KPCA) is firstly adopted on raw HSIs to reduce the dimensions. Then, the KPCA-reduced HSI and LiDAR data are converted to the shearlet domain for texture and area feature extraction. In contrast, superpixel segmentation algorithm utilizes the raw HSI data to obtain the initial oversegmentation map. Subsequently, by utilizing a well-designed minimum merging cost that fully considers spectral (HSI and LiDAR data), texture, and area features, a region merging procedure is gradually conducted to produce a final merging map. Further, a scale map that locally indicates the filter size is achieved by calculating the edge distance. Finally, the KPCA-reduced HSI and LiDAR data are convolved with the locally adaptive filters for feature extraction, and a random forest (RF) classifier is thus adopted for classification. The effectiveness of our ShearSAF approach is verified on three real-world datasets, and the results show that the performance of ShearSAF can achieve an accuracy higher than that of comparison methods when exploiting small-size training sample problems. The codes of this work will be available at http://jiasen.tech/papers/ for the sake of reproducibility.\",\"PeriodicalId\":38304,\"journal\":{\"name\":\"遥感学报\",\"volume\":\"2021 1\",\"pages\":\"1-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遥感学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.34133/2021/9825415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2021/9825415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shearlet-Based Structure-Aware Filtering for Hyperspectral and LiDAR Data Classification
The joint interpretation of hyperspectral images (HSIs) and light detection and ranging (LiDAR) data has developed rapidly in recent years due to continuously evolving image processing technology. Nowadays, most feature extraction methods are carried out by convolving the raw data with fixed-size filters, whereas the structural and texture information of objects in multiple scales cannot be sufficiently exploited. In this article, a shearlet-based structure-aware filtering approach, abbreviated as ShearSAF, is proposed for HSI and LiDAR feature extraction and classification. Specifically, superpixel-guided kernel principal component analysis (KPCA) is firstly adopted on raw HSIs to reduce the dimensions. Then, the KPCA-reduced HSI and LiDAR data are converted to the shearlet domain for texture and area feature extraction. In contrast, superpixel segmentation algorithm utilizes the raw HSI data to obtain the initial oversegmentation map. Subsequently, by utilizing a well-designed minimum merging cost that fully considers spectral (HSI and LiDAR data), texture, and area features, a region merging procedure is gradually conducted to produce a final merging map. Further, a scale map that locally indicates the filter size is achieved by calculating the edge distance. Finally, the KPCA-reduced HSI and LiDAR data are convolved with the locally adaptive filters for feature extraction, and a random forest (RF) classifier is thus adopted for classification. The effectiveness of our ShearSAF approach is verified on three real-world datasets, and the results show that the performance of ShearSAF can achieve an accuracy higher than that of comparison methods when exploiting small-size training sample problems. The codes of this work will be available at http://jiasen.tech/papers/ for the sake of reproducibility.
遥感学报Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
The predecessor of Journal of Remote Sensing is Remote Sensing of Environment, which was founded in 1986. It was born in the beginning of China's remote sensing career and is the first remote sensing journal that has grown up with the development of China's remote sensing career. Since its inception, the Journal of Remote Sensing has published a large number of the latest scientific research results in China and the results of nationally-supported research projects in the light of the priorities and needs of China's remote sensing endeavours at different times, playing a great role in the development of remote sensing science and technology and the cultivation of talents in China, and becoming the most influential academic journal in the field of remote sensing and geographic information science in China.
As the only national comprehensive academic journal in the field of remote sensing in China, Journal of Remote Sensing is dedicated to reporting the research reports, stage-by-stage research briefs and high-level reviews in the field of remote sensing and its related disciplines with international and domestic advanced level. It focuses on new concepts, results and progress in this field. It covers the basic theories of remote sensing, the development of remote sensing technology and the application of remote sensing in the fields of agriculture, forestry, hydrology, geology, mining, oceanography, mapping and other resource and environmental fields as well as in disaster monitoring, research on geographic information systems (GIS), and the integration of remote sensing with GIS and the Global Navigation Satellite System (GNSS) and its applications.