广义除数函数的Bressoud–Subbarao型加权划分恒等式

Pub Date : 2023-04-17 DOI:10.1007/s00026-023-00647-1
Archit Agarwal, Subhash Chand Bhoria, Pramod Eyyunni, Bibekananda Maji
{"title":"广义除数函数的Bressoud–Subbarao型加权划分恒等式","authors":"Archit Agarwal,&nbsp;Subhash Chand Bhoria,&nbsp;Pramod Eyyunni,&nbsp;Bibekananda Maji","doi":"10.1007/s00026-023-00647-1","DOIUrl":null,"url":null,"abstract":"<div><p>In 1984, Bressoud and Subbarao obtained an interesting weighted partition identity for a generalized divisor function, by means of combinatorial arguments. Recently, the last three named authors found an analytic proof of the aforementioned identity of Bressoud and Subbarao starting from a <i>q</i>-series identity of Ramanujan. In the present paper, we revisit the combinatorial arguments of Bressoud and Subbarao, and derive a more general weighted partition identity. Furthermore, with the help of a fractional differential operator, we establish a few more Bressoud–Subbarao type weighted partition identities beginning from an identity of Andrews, Garvan and Liang. We also found a one-variable generalization of an identity of Uchimura related to Bell polynomials.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bressoud–Subbarao Type Weighted Partition Identities for a Generalized Divisor Function\",\"authors\":\"Archit Agarwal,&nbsp;Subhash Chand Bhoria,&nbsp;Pramod Eyyunni,&nbsp;Bibekananda Maji\",\"doi\":\"10.1007/s00026-023-00647-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1984, Bressoud and Subbarao obtained an interesting weighted partition identity for a generalized divisor function, by means of combinatorial arguments. Recently, the last three named authors found an analytic proof of the aforementioned identity of Bressoud and Subbarao starting from a <i>q</i>-series identity of Ramanujan. In the present paper, we revisit the combinatorial arguments of Bressoud and Subbarao, and derive a more general weighted partition identity. Furthermore, with the help of a fractional differential operator, we establish a few more Bressoud–Subbarao type weighted partition identities beginning from an identity of Andrews, Garvan and Liang. We also found a one-variable generalization of an identity of Uchimura related to Bell polynomials.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00647-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00647-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1984 年,Bressoud 和 Subbarao 通过组合论证,得到了广义除数函数的一个有趣的加权分割同一性。最近,后三位作者又从拉马努扬的 q 序列同一性出发,找到了对 Bressoud 和 Subbarao 上述同一性的解析证明。在本文中,我们重温了 Bressoud 和 Subbarao 的组合论证,并推导出一个更一般的加权分割同一性。此外,在分数微分算子的帮助下,我们从安德鲁斯、加万和梁的一个特征出发,建立了更多的布列索德-苏巴拉奥类型的加权分割特征。我们还发现了与贝尔多项式有关的内村特性的一变量广义化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bressoud–Subbarao Type Weighted Partition Identities for a Generalized Divisor Function

In 1984, Bressoud and Subbarao obtained an interesting weighted partition identity for a generalized divisor function, by means of combinatorial arguments. Recently, the last three named authors found an analytic proof of the aforementioned identity of Bressoud and Subbarao starting from a q-series identity of Ramanujan. In the present paper, we revisit the combinatorial arguments of Bressoud and Subbarao, and derive a more general weighted partition identity. Furthermore, with the help of a fractional differential operator, we establish a few more Bressoud–Subbarao type weighted partition identities beginning from an identity of Andrews, Garvan and Liang. We also found a one-variable generalization of an identity of Uchimura related to Bell polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信