{"title":"瞬态弹性连杆机构介导的摩擦力:对有界变化载荷的扩展","authors":"S. Allouch, V. Milišić","doi":"10.1216/jie.2022.34.267","DOIUrl":null,"url":null,"abstract":"In this work, we are interested in the convergence of a system of integro-differential equations with respect to an asymptotic parameter ε. It appears in the context of cell adhesion modelling [16, 15]. We extend the framework from [12, 13], strongly depending on the hypothesis that the external load f is in Lip([0, T ]) to the case where f ∈ BV(0, T ) only. We show how results presented in [13] naturally extend to this new setting, while only partial results can be obtained following the comparison principle introduced in [12].","PeriodicalId":50176,"journal":{"name":"Journal of Integral Equations and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Friction mediated by transient elastic linkages: extension to loads of bounded variation\",\"authors\":\"S. Allouch, V. Milišić\",\"doi\":\"10.1216/jie.2022.34.267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we are interested in the convergence of a system of integro-differential equations with respect to an asymptotic parameter ε. It appears in the context of cell adhesion modelling [16, 15]. We extend the framework from [12, 13], strongly depending on the hypothesis that the external load f is in Lip([0, T ]) to the case where f ∈ BV(0, T ) only. We show how results presented in [13] naturally extend to this new setting, while only partial results can be obtained following the comparison principle introduced in [12].\",\"PeriodicalId\":50176,\"journal\":{\"name\":\"Journal of Integral Equations and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integral Equations and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jie.2022.34.267\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integral Equations and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jie.2022.34.267","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Friction mediated by transient elastic linkages: extension to loads of bounded variation
In this work, we are interested in the convergence of a system of integro-differential equations with respect to an asymptotic parameter ε. It appears in the context of cell adhesion modelling [16, 15]. We extend the framework from [12, 13], strongly depending on the hypothesis that the external load f is in Lip([0, T ]) to the case where f ∈ BV(0, T ) only. We show how results presented in [13] naturally extend to this new setting, while only partial results can be obtained following the comparison principle introduced in [12].
期刊介绍:
Journal of Integral Equations and Applications is an international journal devoted to research in the general area of integral equations and their applications.
The Journal of Integral Equations and Applications, founded in 1988, endeavors to publish significant research papers and substantial expository/survey papers in theory, numerical analysis, and applications of various areas of integral equations, and to influence and shape developments in this field.
The Editors aim at maintaining a balanced coverage between theory and applications, between existence theory and constructive approximation, and between topological/operator-theoretic methods and classical methods in all types of integral equations. The journal is expected to be an excellent source of current information in this area for mathematicians, numerical analysts, engineers, physicists, biologists and other users of integral equations in the applied mathematical sciences.