Andrews配分函数EO(n)的若干同余性

Pub Date : 2021-03-01 DOI:10.5666/KMJ.2021.61.1.49
S. N. Fathima, U. Pore
{"title":"Andrews配分函数EO(n)的若干同余性","authors":"S. N. Fathima, U. Pore","doi":"10.5666/KMJ.2021.61.1.49","DOIUrl":null,"url":null,"abstract":"Abstract. Recently, Andrews introduced partition functions EO(n) and EO(n) where the function EO(n) denotes the number of partitions of n in which every even part is less than each odd part and the function EO(n) denotes the number of partitions enumerated by EO(n) in which only the largest even part appears an odd number of times. In this paper we obtain some congruences modulo 2, 4, 10 and 20 for the partition function EO(n). We give a simple proof of the first Ramanujan-type congruences EO (10n+ 8) ≡ 0 (mod 5) given by Andrews.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Congruences for Andrews’ Partition Function EO(n)\",\"authors\":\"S. N. Fathima, U. Pore\",\"doi\":\"10.5666/KMJ.2021.61.1.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Recently, Andrews introduced partition functions EO(n) and EO(n) where the function EO(n) denotes the number of partitions of n in which every even part is less than each odd part and the function EO(n) denotes the number of partitions enumerated by EO(n) in which only the largest even part appears an odd number of times. In this paper we obtain some congruences modulo 2, 4, 10 and 20 for the partition function EO(n). We give a simple proof of the first Ramanujan-type congruences EO (10n+ 8) ≡ 0 (mod 5) given by Andrews.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5666/KMJ.2021.61.1.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2021.61.1.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要最近,Andrews引入了配分函数EO(n)和EO(n。本文得到了配分函数EO(n)模2,4,10和20的一些同余。我们给出了Andrews给出的第一个Ramanujan型同余EO(10n+8)lect 0(mod 5)的一个简单证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some Congruences for Andrews’ Partition Function EO(n)
Abstract. Recently, Andrews introduced partition functions EO(n) and EO(n) where the function EO(n) denotes the number of partitions of n in which every even part is less than each odd part and the function EO(n) denotes the number of partitions enumerated by EO(n) in which only the largest even part appears an odd number of times. In this paper we obtain some congruences modulo 2, 4, 10 and 20 for the partition function EO(n). We give a simple proof of the first Ramanujan-type congruences EO (10n+ 8) ≡ 0 (mod 5) given by Andrews.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信