关于广义弱(Ricci)$\phi$对称Lorentzian-ParaSasaki流形

Q3 Mathematics
M. R. Bakshi, K. Baishya, Dr. Ashis Biswas
{"title":"关于广义弱(Ricci)$\\phi$对称Lorentzian-ParaSasaki流形","authors":"M. R. Bakshi, K. Baishya, Dr. Ashis Biswas","doi":"10.30755/nsjom.11043","DOIUrl":null,"url":null,"abstract":"The present paper attempt to introduce the notion of generalized weakly φ-symmetric and generalized weakly Ricci φ-symmetric Lorentzian Para Sasakian manifold. Furthermore, we have studied generalized weakly φ-symmetric Lorentzian Para-Sasakian spacetimes. In addition, the existence of generalized weakly φ-symmetric Lorentzian Para Sasakian manifold is ensured by a suitable example. AMS Mathematics Subject Classification (2010): 53C15; 53C25","PeriodicalId":38723,"journal":{"name":"Novi Sad Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On generalized weakly (Ricci) $\\\\phi $-symmetric Lorentzian Para\\nSasakian manifold\",\"authors\":\"M. R. Bakshi, K. Baishya, Dr. Ashis Biswas\",\"doi\":\"10.30755/nsjom.11043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper attempt to introduce the notion of generalized weakly φ-symmetric and generalized weakly Ricci φ-symmetric Lorentzian Para Sasakian manifold. Furthermore, we have studied generalized weakly φ-symmetric Lorentzian Para-Sasakian spacetimes. In addition, the existence of generalized weakly φ-symmetric Lorentzian Para Sasakian manifold is ensured by a suitable example. AMS Mathematics Subject Classification (2010): 53C15; 53C25\",\"PeriodicalId\":38723,\"journal\":{\"name\":\"Novi Sad Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Novi Sad Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30755/nsjom.11043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Novi Sad Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30755/nsjom.11043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文试图引入广义弱φ对称和广义弱Ricciφ对称Lorentzian-Para-Sasakian流形的概念。此外,我们还研究了广义弱φ对称洛伦兹-帕拉-佐佐基时空。此外,通过一个适当的例子,证明了广义弱φ对称洛伦兹Para-Sasakian流形的存在性。AMS数学学科分类(2010):53C15;53C25
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On generalized weakly (Ricci) $\phi $-symmetric Lorentzian Para Sasakian manifold
The present paper attempt to introduce the notion of generalized weakly φ-symmetric and generalized weakly Ricci φ-symmetric Lorentzian Para Sasakian manifold. Furthermore, we have studied generalized weakly φ-symmetric Lorentzian Para-Sasakian spacetimes. In addition, the existence of generalized weakly φ-symmetric Lorentzian Para Sasakian manifold is ensured by a suitable example. AMS Mathematics Subject Classification (2010): 53C15; 53C25
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Novi Sad Journal of Mathematics
Novi Sad Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.80
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信