{"title":"关于几乎Hermitian流形上的Kähler相似性","authors":"Masaya Kawamura","doi":"10.1515/coma-2019-0020","DOIUrl":null,"url":null,"abstract":"Abstract We define a Kähler-like almost Hermitian metric. We will prove that on a compact Kähler-like almost Hermitian manifold (M2n, J, g), if it admits a positive ∂ ̄∂-closed (n − 2, n − 2)-form, then g is a quasi-Kähler metric.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"6 1","pages":"366 - 376"},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2019-0020","citationCount":"1","resultStr":"{\"title\":\"On the Kähler-likeness on almost Hermitian manifolds\",\"authors\":\"Masaya Kawamura\",\"doi\":\"10.1515/coma-2019-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We define a Kähler-like almost Hermitian metric. We will prove that on a compact Kähler-like almost Hermitian manifold (M2n, J, g), if it admits a positive ∂ ̄∂-closed (n − 2, n − 2)-form, then g is a quasi-Kähler metric.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"6 1\",\"pages\":\"366 - 376\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/coma-2019-0020\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2019-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2019-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Kähler-likeness on almost Hermitian manifolds
Abstract We define a Kähler-like almost Hermitian metric. We will prove that on a compact Kähler-like almost Hermitian manifold (M2n, J, g), if it admits a positive ∂ ̄∂-closed (n − 2, n − 2)-form, then g is a quasi-Kähler metric.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.