{"title":"碳纳米管的制备及其功能化","authors":"M. Nazhipkyzy, Nazgul Kuantai","doi":"10.15328/cb1147","DOIUrl":null,"url":null,"abstract":"In this work, the synthesis of carbon nanotubes was carried out on the sand surface with hydrophobic properties by chemical vapor deposition (CVD). The effective temperature for the synthesis of carbon nanotubes is 800 °C. Propane-butane gas mixture was used as a source of gaseous carbon. Argon gas (Ar) was used as an inert carrier gas. Nickel nitrate (Ni(NO3)2) was chosen as a catalyst for producing carbon nanotubes. Despite all the special properties of carbon nanomaterials, one of the problems with its use is its tendency to agglomerate and inert to the matrix of various substances. In order to solve this problem, the chemical functionalization of the surface layer of multiwall carbon nanotubes was carried out. To introduce carboxyl groups into the surface layer of carbon nanotubes, its surface was treated with a concentrated mixture of acids H2SO4/HNO3. It has been established that the main part of the functional groups in the surface layer of nanotubes are carboxyl, carbonyl and hydroxyl groups. Carbon nanotubes synthesized on the surface of hydrophobic sand were analyzed by the following research methods: scanning electron microscope, optical microscope, elemental analysis, Raman spectroscopy and a qualitative assessment of functionalized nanotubes using IR spectroscopy.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of carbon nanotubes and their functionalization\",\"authors\":\"M. Nazhipkyzy, Nazgul Kuantai\",\"doi\":\"10.15328/cb1147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the synthesis of carbon nanotubes was carried out on the sand surface with hydrophobic properties by chemical vapor deposition (CVD). The effective temperature for the synthesis of carbon nanotubes is 800 °C. Propane-butane gas mixture was used as a source of gaseous carbon. Argon gas (Ar) was used as an inert carrier gas. Nickel nitrate (Ni(NO3)2) was chosen as a catalyst for producing carbon nanotubes. Despite all the special properties of carbon nanomaterials, one of the problems with its use is its tendency to agglomerate and inert to the matrix of various substances. In order to solve this problem, the chemical functionalization of the surface layer of multiwall carbon nanotubes was carried out. To introduce carboxyl groups into the surface layer of carbon nanotubes, its surface was treated with a concentrated mixture of acids H2SO4/HNO3. It has been established that the main part of the functional groups in the surface layer of nanotubes are carboxyl, carbonyl and hydroxyl groups. Carbon nanotubes synthesized on the surface of hydrophobic sand were analyzed by the following research methods: scanning electron microscope, optical microscope, elemental analysis, Raman spectroscopy and a qualitative assessment of functionalized nanotubes using IR spectroscopy.\",\"PeriodicalId\":9860,\"journal\":{\"name\":\"Chemical Bulletin of Kazakh National University\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Bulletin of Kazakh National University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15328/cb1147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Bulletin of Kazakh National University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15328/cb1147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Production of carbon nanotubes and their functionalization
In this work, the synthesis of carbon nanotubes was carried out on the sand surface with hydrophobic properties by chemical vapor deposition (CVD). The effective temperature for the synthesis of carbon nanotubes is 800 °C. Propane-butane gas mixture was used as a source of gaseous carbon. Argon gas (Ar) was used as an inert carrier gas. Nickel nitrate (Ni(NO3)2) was chosen as a catalyst for producing carbon nanotubes. Despite all the special properties of carbon nanomaterials, one of the problems with its use is its tendency to agglomerate and inert to the matrix of various substances. In order to solve this problem, the chemical functionalization of the surface layer of multiwall carbon nanotubes was carried out. To introduce carboxyl groups into the surface layer of carbon nanotubes, its surface was treated with a concentrated mixture of acids H2SO4/HNO3. It has been established that the main part of the functional groups in the surface layer of nanotubes are carboxyl, carbonyl and hydroxyl groups. Carbon nanotubes synthesized on the surface of hydrophobic sand were analyzed by the following research methods: scanning electron microscope, optical microscope, elemental analysis, Raman spectroscopy and a qualitative assessment of functionalized nanotubes using IR spectroscopy.