{"title":"南非卡鲁中部粗玄岩岩床和火山口的地震成像:对页岩气潜力的影响","authors":"Stephanie Scheiber-Enslin, M. Manzi, S. Webb","doi":"10.25131/SAJG.124.0043","DOIUrl":null,"url":null,"abstract":"\n The Karoo Basin of South Africa covers an area of 700 000 km2 and has been identified as a possible shale gas reserve. Any evaluation of the shale gas potential of the basin must consider the widespread dolerite dykes and sills. These intrusions were emplaced into the Karoo Supergroup and are well dated at around 183 Ma. Their intrusion triggered the explosive releases of gas in the basin, marked on surface by breccia pipes and hydrothermal vents. This outpouring of gas has been proposed as a significant contributor to global climate change.\n Research into the three-dimensional interconnected structure of these dolerite sills and dykes and their interaction with the hydrocarbon rich layers in the lower part of the Karoo Supergroup has been limited to localized observations of outcrop, magnetic data, legacy seismic data (from the 1970s) and well core. Here we present an interpreted 65 km long higher-resolution 2D seismic reflection profile across the Karoo Basin, approximately 100 km southeast of Trompsburg. These data were collected in the 1990s and at the time deeper structures along the line interpreted. In this study we focus on the top 0.6 to 2 seconds TWT of the data. The seismic line images the interconnected and cross cutting nature of the dolerite dykes and sills along the profile. We also report possible evidence of a gas escape structure (approximately 2.5 km in diameter at surface) emerging near the edge of a dolerite sill in close proximity to the Whitehill Formation, which is the main target for shale gas exploration. This suggests that gas vents in the eastern Karoo Basin close to Lesotho are due to the release of gas from the carbonaceous shales of the Ecca Group. This is similar to breccia pipes mapped on surface in the western part of the Karoo Basin.\n This seismic section highlights why dolerite sills and dykes must be considered when evaluating the shale gas potential of the Karoo Basin. We propose that better characterization of the Karoo Basin subsurface by seismic and magnetic studies is necessary prior to any efforts to calculate shale gas reserves.","PeriodicalId":49494,"journal":{"name":"South African Journal of Geology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Seismic imaging of dolerite sills and volcanic vents in the Central Karoo, South Africa: implications for shale gas potential\",\"authors\":\"Stephanie Scheiber-Enslin, M. Manzi, S. Webb\",\"doi\":\"10.25131/SAJG.124.0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Karoo Basin of South Africa covers an area of 700 000 km2 and has been identified as a possible shale gas reserve. Any evaluation of the shale gas potential of the basin must consider the widespread dolerite dykes and sills. These intrusions were emplaced into the Karoo Supergroup and are well dated at around 183 Ma. Their intrusion triggered the explosive releases of gas in the basin, marked on surface by breccia pipes and hydrothermal vents. This outpouring of gas has been proposed as a significant contributor to global climate change.\\n Research into the three-dimensional interconnected structure of these dolerite sills and dykes and their interaction with the hydrocarbon rich layers in the lower part of the Karoo Supergroup has been limited to localized observations of outcrop, magnetic data, legacy seismic data (from the 1970s) and well core. Here we present an interpreted 65 km long higher-resolution 2D seismic reflection profile across the Karoo Basin, approximately 100 km southeast of Trompsburg. These data were collected in the 1990s and at the time deeper structures along the line interpreted. In this study we focus on the top 0.6 to 2 seconds TWT of the data. The seismic line images the interconnected and cross cutting nature of the dolerite dykes and sills along the profile. We also report possible evidence of a gas escape structure (approximately 2.5 km in diameter at surface) emerging near the edge of a dolerite sill in close proximity to the Whitehill Formation, which is the main target for shale gas exploration. This suggests that gas vents in the eastern Karoo Basin close to Lesotho are due to the release of gas from the carbonaceous shales of the Ecca Group. This is similar to breccia pipes mapped on surface in the western part of the Karoo Basin.\\n This seismic section highlights why dolerite sills and dykes must be considered when evaluating the shale gas potential of the Karoo Basin. We propose that better characterization of the Karoo Basin subsurface by seismic and magnetic studies is necessary prior to any efforts to calculate shale gas reserves.\",\"PeriodicalId\":49494,\"journal\":{\"name\":\"South African Journal of Geology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Geology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.25131/SAJG.124.0043\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Geology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.25131/SAJG.124.0043","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
Seismic imaging of dolerite sills and volcanic vents in the Central Karoo, South Africa: implications for shale gas potential
The Karoo Basin of South Africa covers an area of 700 000 km2 and has been identified as a possible shale gas reserve. Any evaluation of the shale gas potential of the basin must consider the widespread dolerite dykes and sills. These intrusions were emplaced into the Karoo Supergroup and are well dated at around 183 Ma. Their intrusion triggered the explosive releases of gas in the basin, marked on surface by breccia pipes and hydrothermal vents. This outpouring of gas has been proposed as a significant contributor to global climate change.
Research into the three-dimensional interconnected structure of these dolerite sills and dykes and their interaction with the hydrocarbon rich layers in the lower part of the Karoo Supergroup has been limited to localized observations of outcrop, magnetic data, legacy seismic data (from the 1970s) and well core. Here we present an interpreted 65 km long higher-resolution 2D seismic reflection profile across the Karoo Basin, approximately 100 km southeast of Trompsburg. These data were collected in the 1990s and at the time deeper structures along the line interpreted. In this study we focus on the top 0.6 to 2 seconds TWT of the data. The seismic line images the interconnected and cross cutting nature of the dolerite dykes and sills along the profile. We also report possible evidence of a gas escape structure (approximately 2.5 km in diameter at surface) emerging near the edge of a dolerite sill in close proximity to the Whitehill Formation, which is the main target for shale gas exploration. This suggests that gas vents in the eastern Karoo Basin close to Lesotho are due to the release of gas from the carbonaceous shales of the Ecca Group. This is similar to breccia pipes mapped on surface in the western part of the Karoo Basin.
This seismic section highlights why dolerite sills and dykes must be considered when evaluating the shale gas potential of the Karoo Basin. We propose that better characterization of the Karoo Basin subsurface by seismic and magnetic studies is necessary prior to any efforts to calculate shale gas reserves.
期刊介绍:
The South African Journal of Geology publishes scientific papers, notes, stratigraphic descriptions and discussions in the broadly defined fields of geoscience that are related directly or indirectly to the geology of Africa. Contributions relevant to former supercontinental entities such as Gondwana and Rodinia are also welcome as are topical studies on any geoscience-related discipline. Review papers are welcome as long as they represent original, new syntheses. Special issues are also encouraged but terms for these must be negotiated with the Editors.