{"title":"上同调交数的局部化公式","authors":"Saiei-Jaeyeong Matsubara-Heo","doi":"10.2969/jmsj/87738773","DOIUrl":null,"url":null,"abstract":"We revisit the localization formulas of cohomology intersection numbers associated to a logarithmic connection. The main contribution of this paper is threefold: we prove the localization formula of the cohomology intersection number of logarithmic forms in terms of residue of a connection; we prove that the leading term of the Laurent expansion of the cohomology intersection number is Grothendieck residue when the connection is hypergeometric; and we prove that the leading term of stringy integral discussed by Arkani-Hamed, He and Lam is nothing but the self-cohomology intersection number of the canonical form.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Localization formulas of cohomology intersection numbers\",\"authors\":\"Saiei-Jaeyeong Matsubara-Heo\",\"doi\":\"10.2969/jmsj/87738773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the localization formulas of cohomology intersection numbers associated to a logarithmic connection. The main contribution of this paper is threefold: we prove the localization formula of the cohomology intersection number of logarithmic forms in terms of residue of a connection; we prove that the leading term of the Laurent expansion of the cohomology intersection number is Grothendieck residue when the connection is hypergeometric; and we prove that the leading term of stringy integral discussed by Arkani-Hamed, He and Lam is nothing but the self-cohomology intersection number of the canonical form.\",\"PeriodicalId\":49988,\"journal\":{\"name\":\"Journal of the Mathematical Society of Japan\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mathematical Society of Japan\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/87738773\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mathematical Society of Japan","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/87738773","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Localization formulas of cohomology intersection numbers
We revisit the localization formulas of cohomology intersection numbers associated to a logarithmic connection. The main contribution of this paper is threefold: we prove the localization formula of the cohomology intersection number of logarithmic forms in terms of residue of a connection; we prove that the leading term of the Laurent expansion of the cohomology intersection number is Grothendieck residue when the connection is hypergeometric; and we prove that the leading term of stringy integral discussed by Arkani-Hamed, He and Lam is nothing but the self-cohomology intersection number of the canonical form.
期刊介绍:
The Journal of the Mathematical Society of Japan (JMSJ) was founded in 1948 and is published quarterly by the Mathematical Society of Japan (MSJ). It covers a wide range of pure mathematics. To maintain high standards, research articles in the journal are selected by the editorial board with the aid of distinguished international referees. Electronic access to the articles is offered through Project Euclid and J-STAGE. We provide free access to back issues three years after publication (available also at Online Index).