用ω-连续导数和限制收敛域扩展类超哈雷方法的适用性

IF 0.4 Q4 MATHEMATICS
I. Argyros, S. George
{"title":"用ω-连续导数和限制收敛域扩展类超哈雷方法的适用性","authors":"I. Argyros, S. George","doi":"10.2478/amsil-2018-0008","DOIUrl":null,"url":null,"abstract":"Abstract We present a local convergence analysis of the super-Halley-like method in order to approximate a locally unique solution of an equation in a Banach space setting. The convergence analysis in earlier studies was based on hypotheses reaching up to the third derivative of the operator. In the present study we expand the applicability of the super-Halley-like method by using hypotheses up to the second derivative. We also provide: a computable error on the distances involved and a uniqueness result based on Lipschitz constants. Numerical examples are also presented in this study.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"33 1","pages":"21 - 40"},"PeriodicalIF":0.4000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extending the Applicability of the Super-Halley-Like Method Using ω-Continuous Derivatives and Restricted Convergence Domains\",\"authors\":\"I. Argyros, S. George\",\"doi\":\"10.2478/amsil-2018-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a local convergence analysis of the super-Halley-like method in order to approximate a locally unique solution of an equation in a Banach space setting. The convergence analysis in earlier studies was based on hypotheses reaching up to the third derivative of the operator. In the present study we expand the applicability of the super-Halley-like method by using hypotheses up to the second derivative. We also provide: a computable error on the distances involved and a uniqueness result based on Lipschitz constants. Numerical examples are also presented in this study.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"33 1\",\"pages\":\"21 - 40\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2018-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2018-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要为了逼近Banach空间中方程的局部唯一解,我们给出了类超哈雷方法的局部收敛性分析。早期研究中的收敛性分析是基于达到算子三阶导数的假设。在本研究中,我们通过使用高达二阶导数的假设来扩展超哈雷方法的适用性。我们还提供了:所涉及距离的可计算误差和基于Lipschitz常数的唯一性结果。文中还给出了算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending the Applicability of the Super-Halley-Like Method Using ω-Continuous Derivatives and Restricted Convergence Domains
Abstract We present a local convergence analysis of the super-Halley-like method in order to approximate a locally unique solution of an equation in a Banach space setting. The convergence analysis in earlier studies was based on hypotheses reaching up to the third derivative of the operator. In the present study we expand the applicability of the super-Halley-like method by using hypotheses up to the second derivative. We also provide: a computable error on the distances involved and a uniqueness result based on Lipschitz constants. Numerical examples are also presented in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信