{"title":"稀疏流计算中数据驱动的非线性本构关系","authors":"Wenwen Zhao, Lijian Jiang, Shaobo Yao, Weifang Chen","doi":"10.21203/rs.3.rs-735668/v1","DOIUrl":null,"url":null,"abstract":"To overcome the defects of traditional rarefied numerical methods such as the Direct Simulation Monte Carlo (DSMC) method and unified Boltzmann equation schemes and extend the covering range of macroscopic equations in high Knudsen number flows, data-driven nonlinear constitutive relations (DNCR) are proposed first through the machine learning method. Based on the training data from both Navier-Stokes (NS) solver and unified gas kinetic scheme (UGKS) solver, the map between responses of stress tensors and heat flux and feature vectors is established after the training phase. Through the obtained off-line training model, new test cases excluded from training data set could be predicated rapidly and accurately by solving conventional equations with modified stress tensor and heat flux. Finally, conventional one-dimensional shock wave cases and two-dimensional hypersonic flows around a blunt circular cylinder are presented to assess the capability of the developed method through various comparisons between DNCR, NS, UGKS, DSMC and experimental results. The improvement of the predictive capability of the coarse-graining model could make the DNCR method to be an effective tool in the rarefied gas community, especially for hypersonic engineering applications.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven nonlinear constitutive relations for rarefied flow computations\",\"authors\":\"Wenwen Zhao, Lijian Jiang, Shaobo Yao, Weifang Chen\",\"doi\":\"10.21203/rs.3.rs-735668/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To overcome the defects of traditional rarefied numerical methods such as the Direct Simulation Monte Carlo (DSMC) method and unified Boltzmann equation schemes and extend the covering range of macroscopic equations in high Knudsen number flows, data-driven nonlinear constitutive relations (DNCR) are proposed first through the machine learning method. Based on the training data from both Navier-Stokes (NS) solver and unified gas kinetic scheme (UGKS) solver, the map between responses of stress tensors and heat flux and feature vectors is established after the training phase. Through the obtained off-line training model, new test cases excluded from training data set could be predicated rapidly and accurately by solving conventional equations with modified stress tensor and heat flux. Finally, conventional one-dimensional shock wave cases and two-dimensional hypersonic flows around a blunt circular cylinder are presented to assess the capability of the developed method through various comparisons between DNCR, NS, UGKS, DSMC and experimental results. The improvement of the predictive capability of the coarse-graining model could make the DNCR method to be an effective tool in the rarefied gas community, especially for hypersonic engineering applications.\",\"PeriodicalId\":33737,\"journal\":{\"name\":\"Advances in Aerodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-735668/v1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-735668/v1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Data-driven nonlinear constitutive relations for rarefied flow computations
To overcome the defects of traditional rarefied numerical methods such as the Direct Simulation Monte Carlo (DSMC) method and unified Boltzmann equation schemes and extend the covering range of macroscopic equations in high Knudsen number flows, data-driven nonlinear constitutive relations (DNCR) are proposed first through the machine learning method. Based on the training data from both Navier-Stokes (NS) solver and unified gas kinetic scheme (UGKS) solver, the map between responses of stress tensors and heat flux and feature vectors is established after the training phase. Through the obtained off-line training model, new test cases excluded from training data set could be predicated rapidly and accurately by solving conventional equations with modified stress tensor and heat flux. Finally, conventional one-dimensional shock wave cases and two-dimensional hypersonic flows around a blunt circular cylinder are presented to assess the capability of the developed method through various comparisons between DNCR, NS, UGKS, DSMC and experimental results. The improvement of the predictive capability of the coarse-graining model could make the DNCR method to be an effective tool in the rarefied gas community, especially for hypersonic engineering applications.