两个非交换变量中的非交换流形、自由平方根和对称函数

IF 1.1 Q1 MATHEMATICS
J. Agler, John E. McCarthy, N. Young
{"title":"两个非交换变量中的非交换流形、自由平方根和对称函数","authors":"J. Agler, John E. McCarthy, N. Young","doi":"10.1112/tlm3.12015","DOIUrl":null,"url":null,"abstract":"The richly developed theory of complex manifolds plays important roles in our understanding of holomorphic functions in several complex variables. It is natural to consider manifolds that will play similar roles in the theory of holomorphic functions in several non‐commuting variables. In this paper we introduce the class of nc‐manifolds, the mathematical objects that at each point possess a neighborhood that has the structure of an nc‐domain in the d ‐dimensional nc‐universe Md . We illustrate the use of such manifolds in free analysis through the construction of the non‐commutative Riemann surface for the matricial square root function. A second illustration is the construction of a non‐commutative analog of the elementary symmetric functions in two variables. For any symmetric domain in M2 we construct a two‐dimensional non‐commutative manifold such that the symmetric holomorphic functions on the domain are in bijective correspondence with the holomorphic functions on the manifold. We also derive a version of the classical Newton–Girard formulae for power sums of two non‐commuting variables.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlm3.12015","citationCount":"6","resultStr":"{\"title\":\"Non‐commutative manifolds, the free square root and symmetric functions in two non‐commuting variables\",\"authors\":\"J. Agler, John E. McCarthy, N. Young\",\"doi\":\"10.1112/tlm3.12015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The richly developed theory of complex manifolds plays important roles in our understanding of holomorphic functions in several complex variables. It is natural to consider manifolds that will play similar roles in the theory of holomorphic functions in several non‐commuting variables. In this paper we introduce the class of nc‐manifolds, the mathematical objects that at each point possess a neighborhood that has the structure of an nc‐domain in the d ‐dimensional nc‐universe Md . We illustrate the use of such manifolds in free analysis through the construction of the non‐commutative Riemann surface for the matricial square root function. A second illustration is the construction of a non‐commutative analog of the elementary symmetric functions in two variables. For any symmetric domain in M2 we construct a two‐dimensional non‐commutative manifold such that the symmetric holomorphic functions on the domain are in bijective correspondence with the holomorphic functions on the manifold. We also derive a version of the classical Newton–Girard formulae for power sums of two non‐commuting variables.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlm3.12015\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

丰富发展的复流形理论在我们理解几个复变量中的全纯函数方面发挥着重要作用。考虑在几个非交换变量的全纯函数理论中扮演类似角色的流形是很自然的。在本文中,我们介绍了一类nc流形,即在每个点上都拥有一个邻域的数学对象,该邻域在d维nc宇宙Md中具有nc域的结构。我们通过构造矩阵平方根函数的非交换黎曼曲面来说明这种流形在自由分析中的使用。第二个例子是构造两个变量中的初等对称函数的非交换模拟。对于M2中的任何对称域,我们构造了一个二维非交换流形,使得域上的对称全纯函数与流形上的全纯函数是双射对应的。我们还推导了两个非交换变量的幂和的经典牛顿-吉拉德公式的一个版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non‐commutative manifolds, the free square root and symmetric functions in two non‐commuting variables
The richly developed theory of complex manifolds plays important roles in our understanding of holomorphic functions in several complex variables. It is natural to consider manifolds that will play similar roles in the theory of holomorphic functions in several non‐commuting variables. In this paper we introduce the class of nc‐manifolds, the mathematical objects that at each point possess a neighborhood that has the structure of an nc‐domain in the d ‐dimensional nc‐universe Md . We illustrate the use of such manifolds in free analysis through the construction of the non‐commutative Riemann surface for the matricial square root function. A second illustration is the construction of a non‐commutative analog of the elementary symmetric functions in two variables. For any symmetric domain in M2 we construct a two‐dimensional non‐commutative manifold such that the symmetric holomorphic functions on the domain are in bijective correspondence with the holomorphic functions on the manifold. We also derive a version of the classical Newton–Girard formulae for power sums of two non‐commuting variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信