具有LEBESGUE可测增益的极小积分的凹性

Pub Date : 2023-06-05 DOI:10.1017/nmj.2023.12
Q. Guan, Zheng Yuan
{"title":"具有LEBESGUE可测增益的极小积分的凹性","authors":"Q. Guan, Zheng Yuan","doi":"10.1017/nmj.2023.12","DOIUrl":null,"url":null,"abstract":"\n In this article, we present a concavity property of the minimal \n \n \n \n$L^{2}$\n\n \n integrals related to multiplier ideal sheaves with Lebesgue measurable gain. As applications, we give necessary conditions for our concavity degenerating to linearity, characterizations for 1-dimensional case, and a characterization for the holding of the equality in optimal \n \n \n \n$L^2$\n\n \n extension problem on open Riemann surfaces with weights may not be subharmonic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"CONCAVITY PROPERTY OF MINIMAL INTEGRALS WITH LEBESGUE MEASURABLE GAIN\",\"authors\":\"Q. Guan, Zheng Yuan\",\"doi\":\"10.1017/nmj.2023.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this article, we present a concavity property of the minimal \\n \\n \\n \\n$L^{2}$\\n\\n \\n integrals related to multiplier ideal sheaves with Lebesgue measurable gain. As applications, we give necessary conditions for our concavity degenerating to linearity, characterizations for 1-dimensional case, and a characterization for the holding of the equality in optimal \\n \\n \\n \\n$L^2$\\n\\n \\n extension problem on open Riemann surfaces with weights may not be subharmonic.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们给出了与具有Lebesgue可测量增益的乘法器理想槽轮有关的最小$L^{2}$积分的凹性。作为应用,我们给出了凹性退化为线性的必要条件,一维情况的特征,以及在具有权重的开Riemann曲面上最优$L^2$扩张问题中等式成立的特征可能不是次调和的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
CONCAVITY PROPERTY OF MINIMAL INTEGRALS WITH LEBESGUE MEASURABLE GAIN
In this article, we present a concavity property of the minimal $L^{2}$ integrals related to multiplier ideal sheaves with Lebesgue measurable gain. As applications, we give necessary conditions for our concavity degenerating to linearity, characterizations for 1-dimensional case, and a characterization for the holding of the equality in optimal $L^2$ extension problem on open Riemann surfaces with weights may not be subharmonic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信