128∘Y铌酸锂薄膜双轴MEMS谐振扫描器

IF 1.3 Q3 ACOUSTICS
Yaoqing Lu, Kangfu Liu, Tao Wu
{"title":"128∘Y铌酸锂薄膜双轴MEMS谐振扫描器","authors":"Yaoqing Lu, Kangfu Liu, Tao Wu","doi":"10.3390/acoustics4020019","DOIUrl":null,"url":null,"abstract":"The micro-electro-mechanical systems (MEMS) resonant scanners are in great demand for numerous light scanning applications. Recently, the development of LiDAR in micro-robotics and mobile devices has led to the requirement of ultra-small systems with low driving voltage, low power, compact size and high performance. We have first proposed the dual-axis MEMS scanner using the lithium niobate (LN) thin-film platform, which is expected to fulfill the requirement. This paper describes the actuation principle and scanner structure, meanwhile develops the analytical model for the scanner. The analytical model is later validated by the finite element analysis. The performance of the proposed scanner is improved with the optimization of the orientation of LN and layer thickness. The proposed scanner achieves the θopt·D·f up to 937.8∘·mm·kHz in simulation. The simulated optical angle in the x-axis and y-axis are 50∘ and 42∘ at 1 V, corresponding to resonant frequencies of 79.9 kHz and 558.2 kHz, respectively. With the superior performance of large deflection, high scanning frequency, high figure of merit and low voltage, the proposed MEMS scanner is a promising candidate for fast scanner applications (e.g., wavelength-selective switches and submicron biomedical system), especially the application of LiDAR in mobile devices or micro-robotics.","PeriodicalId":72045,"journal":{"name":"Acoustics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dual-Axis MEMS Resonant Scanner Using 128∘Y Lithium Niobate Thin-Film\",\"authors\":\"Yaoqing Lu, Kangfu Liu, Tao Wu\",\"doi\":\"10.3390/acoustics4020019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The micro-electro-mechanical systems (MEMS) resonant scanners are in great demand for numerous light scanning applications. Recently, the development of LiDAR in micro-robotics and mobile devices has led to the requirement of ultra-small systems with low driving voltage, low power, compact size and high performance. We have first proposed the dual-axis MEMS scanner using the lithium niobate (LN) thin-film platform, which is expected to fulfill the requirement. This paper describes the actuation principle and scanner structure, meanwhile develops the analytical model for the scanner. The analytical model is later validated by the finite element analysis. The performance of the proposed scanner is improved with the optimization of the orientation of LN and layer thickness. The proposed scanner achieves the θopt·D·f up to 937.8∘·mm·kHz in simulation. The simulated optical angle in the x-axis and y-axis are 50∘ and 42∘ at 1 V, corresponding to resonant frequencies of 79.9 kHz and 558.2 kHz, respectively. With the superior performance of large deflection, high scanning frequency, high figure of merit and low voltage, the proposed MEMS scanner is a promising candidate for fast scanner applications (e.g., wavelength-selective switches and submicron biomedical system), especially the application of LiDAR in mobile devices or micro-robotics.\",\"PeriodicalId\":72045,\"journal\":{\"name\":\"Acoustics (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/acoustics4020019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/acoustics4020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 3

摘要

微机电系统(MEMS)共振扫描仪对许多光扫描应用有很大的需求。近年来,激光雷达在微型机器人和移动设备中的发展导致了对具有低驱动电压、低功率、紧凑尺寸和高性能的超小型系统的需求。我们首次提出了使用铌酸锂(LN)薄膜平台的双轴MEMS扫描仪,有望满足这一要求。本文介绍了扫描仪的驱动原理和结构,同时建立了扫描仪的分析模型。分析模型随后通过有限元分析进行验证。通过优化LN的取向和层厚度,提高了所提出的扫描仪的性能。所提出的扫描仪在模拟中实现了高达937.8∘·mm·kHz的θopt·D·f。在1V下,x轴和y轴上的模拟光学角分别为50和42,分别对应于79.9kHz和558.2kHz的谐振频率。所提出的MEMS扫描仪具有大偏转、高扫描频率、高品质因数和低电压的优异性能,是快速扫描仪应用(如波长选择开关和亚微米生物医学系统)的一个很有前途的候选者,尤其是激光雷达在移动设备或微机器人中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Axis MEMS Resonant Scanner Using 128∘Y Lithium Niobate Thin-Film
The micro-electro-mechanical systems (MEMS) resonant scanners are in great demand for numerous light scanning applications. Recently, the development of LiDAR in micro-robotics and mobile devices has led to the requirement of ultra-small systems with low driving voltage, low power, compact size and high performance. We have first proposed the dual-axis MEMS scanner using the lithium niobate (LN) thin-film platform, which is expected to fulfill the requirement. This paper describes the actuation principle and scanner structure, meanwhile develops the analytical model for the scanner. The analytical model is later validated by the finite element analysis. The performance of the proposed scanner is improved with the optimization of the orientation of LN and layer thickness. The proposed scanner achieves the θopt·D·f up to 937.8∘·mm·kHz in simulation. The simulated optical angle in the x-axis and y-axis are 50∘ and 42∘ at 1 V, corresponding to resonant frequencies of 79.9 kHz and 558.2 kHz, respectively. With the superior performance of large deflection, high scanning frequency, high figure of merit and low voltage, the proposed MEMS scanner is a promising candidate for fast scanner applications (e.g., wavelength-selective switches and submicron biomedical system), especially the application of LiDAR in mobile devices or micro-robotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信