{"title":"使用改进的相机进行波长选择以改进基于图像的文物三维重建","authors":"E. K. Webb, S. Robson, R. Evans, Ariel O’Connor","doi":"10.1080/01971360.2022.2111501","DOIUrl":null,"url":null,"abstract":"ABSTRACT Tools for image-based 3D-reconstruction are commonly used for cultural heritage applications; however, wider usage has increased variability in the quality of output 3D models. Geometric variations between 3D models acquired with differing methods make metric conservation applications such as condition monitoring and measuring change over time challenging. This article presents an investigation of wavelength selection using a modified off-the-shelf DSLR camera and bandpass filters to improve input image quality in a 3D-reconstruction study of a wooden sculpture of a coyote and turtle from the Smithsonian American Art Museum. The sculpture has a large crack of concern to conservators, but its curved, dark shiny surface challenges image-based dimensional monitoring. Selecting infrared wavelengths rather than the visible light for 3D reconstruction input images reduced specular surface reflections and improved image contrast resulting in improved recording of the 3D shape. 3D-reconstructions using infrared radiation produce better reconstructions than those using visible light. In this case reconstructed surface discrepancies between visible light are ∼0.6 mm whilst those using infrared are ∼0.3 mm. Results suggest that reflected infrared images are more forgiving and flexible for recording 3D data over time for dark, shiny wooden surfaces and thus improve the reliability and comparability of image-based 3D-reconstruction.","PeriodicalId":17165,"journal":{"name":"Journal of the American Institute for Conservation","volume":"62 1","pages":"111 - 128"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wavelength Selection Using a Modified Camera to Improve Image-Based 3D Reconstruction of Heritage Objects\",\"authors\":\"E. K. Webb, S. Robson, R. Evans, Ariel O’Connor\",\"doi\":\"10.1080/01971360.2022.2111501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Tools for image-based 3D-reconstruction are commonly used for cultural heritage applications; however, wider usage has increased variability in the quality of output 3D models. Geometric variations between 3D models acquired with differing methods make metric conservation applications such as condition monitoring and measuring change over time challenging. This article presents an investigation of wavelength selection using a modified off-the-shelf DSLR camera and bandpass filters to improve input image quality in a 3D-reconstruction study of a wooden sculpture of a coyote and turtle from the Smithsonian American Art Museum. The sculpture has a large crack of concern to conservators, but its curved, dark shiny surface challenges image-based dimensional monitoring. Selecting infrared wavelengths rather than the visible light for 3D reconstruction input images reduced specular surface reflections and improved image contrast resulting in improved recording of the 3D shape. 3D-reconstructions using infrared radiation produce better reconstructions than those using visible light. In this case reconstructed surface discrepancies between visible light are ∼0.6 mm whilst those using infrared are ∼0.3 mm. Results suggest that reflected infrared images are more forgiving and flexible for recording 3D data over time for dark, shiny wooden surfaces and thus improve the reliability and comparability of image-based 3D-reconstruction.\",\"PeriodicalId\":17165,\"journal\":{\"name\":\"Journal of the American Institute for Conservation\",\"volume\":\"62 1\",\"pages\":\"111 - 128\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Institute for Conservation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01971360.2022.2111501\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"HUMANITIES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Institute for Conservation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01971360.2022.2111501","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"HUMANITIES, MULTIDISCIPLINARY","Score":null,"Total":0}
Wavelength Selection Using a Modified Camera to Improve Image-Based 3D Reconstruction of Heritage Objects
ABSTRACT Tools for image-based 3D-reconstruction are commonly used for cultural heritage applications; however, wider usage has increased variability in the quality of output 3D models. Geometric variations between 3D models acquired with differing methods make metric conservation applications such as condition monitoring and measuring change over time challenging. This article presents an investigation of wavelength selection using a modified off-the-shelf DSLR camera and bandpass filters to improve input image quality in a 3D-reconstruction study of a wooden sculpture of a coyote and turtle from the Smithsonian American Art Museum. The sculpture has a large crack of concern to conservators, but its curved, dark shiny surface challenges image-based dimensional monitoring. Selecting infrared wavelengths rather than the visible light for 3D reconstruction input images reduced specular surface reflections and improved image contrast resulting in improved recording of the 3D shape. 3D-reconstructions using infrared radiation produce better reconstructions than those using visible light. In this case reconstructed surface discrepancies between visible light are ∼0.6 mm whilst those using infrared are ∼0.3 mm. Results suggest that reflected infrared images are more forgiving and flexible for recording 3D data over time for dark, shiny wooden surfaces and thus improve the reliability and comparability of image-based 3D-reconstruction.
期刊介绍:
The American Institute for Conservation is the largest conservation membership organization in the United States, and counts among its more than 3000 members the majority of professional conservators, conservation educators and conservation scientists worldwide. The Journal of the American Institute for Conservation (JAIC, or the Journal) is the primary vehicle for the publication of peer-reviewed technical studies, research papers, treatment case studies and ethics and standards discussions relating to the broad field of conservation and preservation of historic and cultural works. Subscribers to the JAIC include AIC members, both individuals and institutions, as well as major libraries and universities.