Huan Yu, B. Kong, Yuting Hou, Xiaoyu Xu, Tao Chen, Xiangmeng Liu
{"title":"高光谱遥感在作物监测中的应用综述","authors":"Huan Yu, B. Kong, Yuting Hou, Xiaoyu Xu, Tao Chen, Xiangmeng Liu","doi":"10.1017/S0014479722000278","DOIUrl":null,"url":null,"abstract":"Summary Numerous technologies have contributed to the recent development of agriculture, especially the advancement in hyperspectral remote sensing (HRS) constituted a revolution in crop monitoring. The widespread use of HRS to obtain crop parameters suggests the need for a review of research advances in this area. HRS offers new theories and methods for studying crop parameters, but much work needs to be done both experimentally and theoretically before we can truly understand the physical and chemical processes that predict these crop parameters. The study focuses on the following elements: 1) The article provides a relatively comprehensive introduction to HRS and how it can be applied to crop monitoring; 2) Current state-of-the-art techniques are summarized and analyzed to inform further advances in crop monitoring; 3) Opportunities and challenges for crop monitoring applications using HRS are discussed, and future research is summarized. Finally, through a comprehensive discussion and analysis, the article proposes new directions for using HRS to study crop characteristics, such as new data mining techniques including deep learning provide opportunities for efficient processing of large amounts of HRS data; combining the temporal and dynamic characteristics of crop parameters and vegetation growth processes will greatly improve the accuracy of crop parameter detection and monitoring; multidata fusion and multiscale data assimilation will become HRS monitoring. Multidata fusion and multiscale data assimilation will become another research hotspot for HRS monitoring of crop parameters.","PeriodicalId":12245,"journal":{"name":"Experimental Agriculture","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A critical review on applications of hyperspectral remote sensing in crop monitoring\",\"authors\":\"Huan Yu, B. Kong, Yuting Hou, Xiaoyu Xu, Tao Chen, Xiangmeng Liu\",\"doi\":\"10.1017/S0014479722000278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Numerous technologies have contributed to the recent development of agriculture, especially the advancement in hyperspectral remote sensing (HRS) constituted a revolution in crop monitoring. The widespread use of HRS to obtain crop parameters suggests the need for a review of research advances in this area. HRS offers new theories and methods for studying crop parameters, but much work needs to be done both experimentally and theoretically before we can truly understand the physical and chemical processes that predict these crop parameters. The study focuses on the following elements: 1) The article provides a relatively comprehensive introduction to HRS and how it can be applied to crop monitoring; 2) Current state-of-the-art techniques are summarized and analyzed to inform further advances in crop monitoring; 3) Opportunities and challenges for crop monitoring applications using HRS are discussed, and future research is summarized. Finally, through a comprehensive discussion and analysis, the article proposes new directions for using HRS to study crop characteristics, such as new data mining techniques including deep learning provide opportunities for efficient processing of large amounts of HRS data; combining the temporal and dynamic characteristics of crop parameters and vegetation growth processes will greatly improve the accuracy of crop parameter detection and monitoring; multidata fusion and multiscale data assimilation will become HRS monitoring. Multidata fusion and multiscale data assimilation will become another research hotspot for HRS monitoring of crop parameters.\",\"PeriodicalId\":12245,\"journal\":{\"name\":\"Experimental Agriculture\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/S0014479722000278\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S0014479722000278","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
A critical review on applications of hyperspectral remote sensing in crop monitoring
Summary Numerous technologies have contributed to the recent development of agriculture, especially the advancement in hyperspectral remote sensing (HRS) constituted a revolution in crop monitoring. The widespread use of HRS to obtain crop parameters suggests the need for a review of research advances in this area. HRS offers new theories and methods for studying crop parameters, but much work needs to be done both experimentally and theoretically before we can truly understand the physical and chemical processes that predict these crop parameters. The study focuses on the following elements: 1) The article provides a relatively comprehensive introduction to HRS and how it can be applied to crop monitoring; 2) Current state-of-the-art techniques are summarized and analyzed to inform further advances in crop monitoring; 3) Opportunities and challenges for crop monitoring applications using HRS are discussed, and future research is summarized. Finally, through a comprehensive discussion and analysis, the article proposes new directions for using HRS to study crop characteristics, such as new data mining techniques including deep learning provide opportunities for efficient processing of large amounts of HRS data; combining the temporal and dynamic characteristics of crop parameters and vegetation growth processes will greatly improve the accuracy of crop parameter detection and monitoring; multidata fusion and multiscale data assimilation will become HRS monitoring. Multidata fusion and multiscale data assimilation will become another research hotspot for HRS monitoring of crop parameters.
期刊介绍:
With a focus on the tropical and sub-tropical regions of the world, Experimental Agriculture publishes the results of original research on field, plantation and herbage crops grown for food or feed, or for industrial purposes, and on farming systems, including livestock and people. It reports experimental work designed to explain how crops respond to the environment in biological and physical terms, and on the social and economic issues that may influence the uptake of the results of research by policy makers and farmers, including the role of institutions and partnerships in delivering impact. The journal also publishes accounts and critical discussions of new quantitative and qualitative methods in agricultural and ecosystems research, and of contemporary issues arising in countries where agricultural production needs to develop rapidly. There is a regular book review section and occasional, often invited, reviews of research.