当障碍物不是正确连续时,反射BSDE的可预测解决方案

IF 0.3 Q4 STATISTICS & PROBABILITY
M. Marzougue, M. El Otmani
{"title":"当障碍物不是正确连续时,反射BSDE的可预测解决方案","authors":"M. Marzougue, M. El Otmani","doi":"10.1515/rose-2020-2045","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper, we consider reflected backward stochastic differential equations when the reflecting obstacle is not necessarily right-continuous in a general filtration that supports a one-dimensional Brownian motion and an independent Poisson random measure. We prove the existence and uniqueness of a predictable solution for such equations under the stochastic Lipschitz coefficient by using the predictable Mertens decomposition.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"28 1","pages":"269 - 279"},"PeriodicalIF":0.3000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rose-2020-2045","citationCount":"5","resultStr":"{\"title\":\"Predictable solution for reflected BSDEs when the obstacle is not right-continuous\",\"authors\":\"M. Marzougue, M. El Otmani\",\"doi\":\"10.1515/rose-2020-2045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present paper, we consider reflected backward stochastic differential equations when the reflecting obstacle is not necessarily right-continuous in a general filtration that supports a one-dimensional Brownian motion and an independent Poisson random measure. We prove the existence and uniqueness of a predictable solution for such equations under the stochastic Lipschitz coefficient by using the predictable Mertens decomposition.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"28 1\",\"pages\":\"269 - 279\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/rose-2020-2045\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2020-2045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2020-2045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

摘要在本文中,我们考虑了在支持一维布朗运动和独立泊松随机测度的一般滤波中,当反射障碍不一定是右连续时的反射后向随机微分方程。利用可预测Mertens分解证明了随机Lipschitz系数下这类方程可预测解的存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictable solution for reflected BSDEs when the obstacle is not right-continuous
Abstract In the present paper, we consider reflected backward stochastic differential equations when the reflecting obstacle is not necessarily right-continuous in a general filtration that supports a one-dimensional Brownian motion and an independent Poisson random measure. We prove the existence and uniqueness of a predictable solution for such equations under the stochastic Lipschitz coefficient by using the predictable Mertens decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信