{"title":"由长期过程触发的喷流AGN的大质量黑洞、高吸积率和非倾斜喷流反馈","authors":"Chandra B. Singh , David Garofalo","doi":"10.1016/j.jheap.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>That jetted active galactic nuclei<span><span><span> (AGN) are also hosted in spiral galaxies is now well established. Our understanding of how such objects might fit in the radio loud AGN subclass has been described by Foschini and others over the past decade in that jets in spirals are weaker than those of </span>radio galaxies and </span>quasars because the black holes in spirals tend to be less massive. Recent data, however, may be pointing to a different picture which we describe. Unlike powerful jetted AGN in ellipticals, we illustrate from model perspectives, features of jets in spirals responsible for limiting both their power as well as their effect on their host galaxies. AGN triggered by secular processes fail to generate jet re-orientation, a key ingredient in the jetted AGN feedback mechanism in merger-triggered ellipticals that leads to the red-and-dead radio galaxies at low redshift such as M87. As a result, jetted AGN in spirals tend to live in a separate part of the parameter space compared to radio galaxies and quasars. Because of the absence of jet re-orientation and due to the relatively short-lived jet phases, jetted AGN in spirals are best compared to radio quiet or jetless AGN than any other jetted AGN subclass.</span></p></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"39 ","pages":"Pages 21-26"},"PeriodicalIF":10.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The massive black holes, high accretion rates, and non-tilted jet feedback, of jetted AGN triggered by secular processes\",\"authors\":\"Chandra B. Singh , David Garofalo\",\"doi\":\"10.1016/j.jheap.2023.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>That jetted active galactic nuclei<span><span><span> (AGN) are also hosted in spiral galaxies is now well established. Our understanding of how such objects might fit in the radio loud AGN subclass has been described by Foschini and others over the past decade in that jets in spirals are weaker than those of </span>radio galaxies and </span>quasars because the black holes in spirals tend to be less massive. Recent data, however, may be pointing to a different picture which we describe. Unlike powerful jetted AGN in ellipticals, we illustrate from model perspectives, features of jets in spirals responsible for limiting both their power as well as their effect on their host galaxies. AGN triggered by secular processes fail to generate jet re-orientation, a key ingredient in the jetted AGN feedback mechanism in merger-triggered ellipticals that leads to the red-and-dead radio galaxies at low redshift such as M87. As a result, jetted AGN in spirals tend to live in a separate part of the parameter space compared to radio galaxies and quasars. Because of the absence of jet re-orientation and due to the relatively short-lived jet phases, jetted AGN in spirals are best compared to radio quiet or jetless AGN than any other jetted AGN subclass.</span></p></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"39 \",\"pages\":\"Pages 21-26\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404823000174\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404823000174","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The massive black holes, high accretion rates, and non-tilted jet feedback, of jetted AGN triggered by secular processes
That jetted active galactic nuclei (AGN) are also hosted in spiral galaxies is now well established. Our understanding of how such objects might fit in the radio loud AGN subclass has been described by Foschini and others over the past decade in that jets in spirals are weaker than those of radio galaxies and quasars because the black holes in spirals tend to be less massive. Recent data, however, may be pointing to a different picture which we describe. Unlike powerful jetted AGN in ellipticals, we illustrate from model perspectives, features of jets in spirals responsible for limiting both their power as well as their effect on their host galaxies. AGN triggered by secular processes fail to generate jet re-orientation, a key ingredient in the jetted AGN feedback mechanism in merger-triggered ellipticals that leads to the red-and-dead radio galaxies at low redshift such as M87. As a result, jetted AGN in spirals tend to live in a separate part of the parameter space compared to radio galaxies and quasars. Because of the absence of jet re-orientation and due to the relatively short-lived jet phases, jetted AGN in spirals are best compared to radio quiet or jetless AGN than any other jetted AGN subclass.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.