关于变奇异指数的各向异性$p$-Laplace方程

IF 1.5 3区 数学 Q1 MATHEMATICS
K. Bal, Prashanta Garain, T. Mukherjee
{"title":"关于变奇异指数的各向异性$p$-Laplace方程","authors":"K. Bal, Prashanta Garain, T. Mukherjee","doi":"10.57262/ade026-1112-535","DOIUrl":null,"url":null,"abstract":" −∆H,pu = λf(x) uq(x) + g(u) in Ω, u > 0 in Ω, u = 0 on ∂Ω, under the assumption Ω is a bounded smooth domain in R with p,N ≥ 2, λ > 0 and 0 < q ∈ C(Ω̄). For the purely singular case that is g ≡ 0, we proved existence and uniqueness of solution. We also demonstrate the existence of multiple solution to (P ) provided f ≡ 1 and g(u) = u for r ∈ (p− 1, p − 1).","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On an Anisotropic $p$-Laplace equation with variable singular exponent\",\"authors\":\"K. Bal, Prashanta Garain, T. Mukherjee\",\"doi\":\"10.57262/ade026-1112-535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" −∆H,pu = λf(x) uq(x) + g(u) in Ω, u > 0 in Ω, u = 0 on ∂Ω, under the assumption Ω is a bounded smooth domain in R with p,N ≥ 2, λ > 0 and 0 < q ∈ C(Ω̄). For the purely singular case that is g ≡ 0, we proved existence and uniqueness of solution. We also demonstrate the existence of multiple solution to (P ) provided f ≡ 1 and g(u) = u for r ∈ (p− 1, p − 1).\",\"PeriodicalId\":53312,\"journal\":{\"name\":\"Advances in Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade026-1112-535\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade026-1112-535","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

 −∆H、 pu=Ω中的λf(x)uq(x)+g(u),Ω中的u>0,在?Ω上的u=0,假设Ω是R中的有界光滑域,其中p,N≥2,λ>0和0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
On an Anisotropic $p$-Laplace equation with variable singular exponent
 −∆H,pu = λf(x) uq(x) + g(u) in Ω, u > 0 in Ω, u = 0 on ∂Ω, under the assumption Ω is a bounded smooth domain in R with p,N ≥ 2, λ > 0 and 0 < q ∈ C(Ω̄). For the purely singular case that is g ≡ 0, we proved existence and uniqueness of solution. We also demonstrate the existence of multiple solution to (P ) provided f ≡ 1 and g(u) = u for r ∈ (p− 1, p − 1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信