关于具有指定极点的有理函数的不等式

Q3 Mathematics
N. A. Rather, Mohmmad Shafi Wani, Ishfaq Dar
{"title":"关于具有指定极点的有理函数的不等式","authors":"N. A. Rather, Mohmmad Shafi Wani, Ishfaq Dar","doi":"10.15826/umj.2022.2.012","DOIUrl":null,"url":null,"abstract":"Let \\(\\Re_n\\) be the set of all rational functions of the type \\(r(z) = p(z)/w(z),\\) where \\(p(z)\\) is a polynomial of degree at most \\(n\\) and  \\(w(z) = \\prod_{j=1}^{n}(z-a_j)\\), \\(|a_j|>1\\) for \\(1\\leq j\\leq n\\).  In this paper, we set up some results for rational functions with fixed poles and restricted zeros. The obtained results bring forth generalizations and refinements of some known inequalities for rational functions and in turn produce generalizations and refinements of some polynomial inequalities as well.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INEQUALITIES PERTAINING TO RATIONAL FUNCTIONS WITH PRESCRIBED POLES\",\"authors\":\"N. A. Rather, Mohmmad Shafi Wani, Ishfaq Dar\",\"doi\":\"10.15826/umj.2022.2.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(\\\\Re_n\\\\) be the set of all rational functions of the type \\\\(r(z) = p(z)/w(z),\\\\) where \\\\(p(z)\\\\) is a polynomial of degree at most \\\\(n\\\\) and  \\\\(w(z) = \\\\prod_{j=1}^{n}(z-a_j)\\\\), \\\\(|a_j|>1\\\\) for \\\\(1\\\\leq j\\\\leq n\\\\).  In this paper, we set up some results for rational functions with fixed poles and restricted zeros. The obtained results bring forth generalizations and refinements of some known inequalities for rational functions and in turn produce generalizations and refinements of some polynomial inequalities as well.\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/umj.2022.2.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2022.2.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设\(\Re_n\)是类型\(r(z)=p(z)/w(z),\)的所有有理函数的集合,其中\(p(z。本文给出了具有固定极点和限制零点的有理函数的一些结果。所得结果对有理函数的一些已知不等式进行了推广和精化,进而对一些多项式不等式进行了概括和精化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INEQUALITIES PERTAINING TO RATIONAL FUNCTIONS WITH PRESCRIBED POLES
Let \(\Re_n\) be the set of all rational functions of the type \(r(z) = p(z)/w(z),\) where \(p(z)\) is a polynomial of degree at most \(n\) and  \(w(z) = \prod_{j=1}^{n}(z-a_j)\), \(|a_j|>1\) for \(1\leq j\leq n\).  In this paper, we set up some results for rational functions with fixed poles and restricted zeros. The obtained results bring forth generalizations and refinements of some known inequalities for rational functions and in turn produce generalizations and refinements of some polynomial inequalities as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信