{"title":"分段连续群的签名","authors":"Octave Lacourte","doi":"10.4171/ggd/664","DOIUrl":null,"url":null,"abstract":"Let PC be the group of bijections from [0, 1[ to itself which are continuous outside a finite set. Let PC be its quotient by the subgroup of finitely supported permutations. We show that the Kapoudjian class of PC vanishes. That is, the quotient map PC $\\rightarrow$ PC splits modulo the alternating subgroup of even permutations. This is shown by constructing a nonzero group homomorphism, called signature, from PC to Z 2Z. Then we use this signature to list normal subgroups of every subgroup G of PC which contains S fin and such that G, the projection of G in PC , is simple.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Signature for piecewise continuous groups\",\"authors\":\"Octave Lacourte\",\"doi\":\"10.4171/ggd/664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let PC be the group of bijections from [0, 1[ to itself which are continuous outside a finite set. Let PC be its quotient by the subgroup of finitely supported permutations. We show that the Kapoudjian class of PC vanishes. That is, the quotient map PC $\\\\rightarrow$ PC splits modulo the alternating subgroup of even permutations. This is shown by constructing a nonzero group homomorphism, called signature, from PC to Z 2Z. Then we use this signature to list normal subgroups of every subgroup G of PC which contains S fin and such that G, the projection of G in PC , is simple.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let PC be the group of bijections from [0, 1[ to itself which are continuous outside a finite set. Let PC be its quotient by the subgroup of finitely supported permutations. We show that the Kapoudjian class of PC vanishes. That is, the quotient map PC $\rightarrow$ PC splits modulo the alternating subgroup of even permutations. This is shown by constructing a nonzero group homomorphism, called signature, from PC to Z 2Z. Then we use this signature to list normal subgroups of every subgroup G of PC which contains S fin and such that G, the projection of G in PC , is simple.