严重急性呼吸系统综合征冠状病毒2型数据驱动随机模型的代理贝叶斯框架

Q2 Mathematics
M. Ganesh, S. Hawkins
{"title":"严重急性呼吸系统综合征冠状病毒2型数据驱动随机模型的代理贝叶斯框架","authors":"M. Ganesh, S. Hawkins","doi":"10.1515/cmb-2022-0131","DOIUrl":null,"url":null,"abstract":"Abstract Dynamic compartmentalized data (DCD) and compartmentalized differential equations (CDEs) are key instruments for modeling transmission of pathogens such as the SARS-CoV-2 virus. We describe an effi-cient nowcasting algorithm for modeling transmission of SARS-CoV-2 with uncertainty quantification for the COVID-19 impact. A key concern for transmission of SARS-CoV-2 is under-reporting of cases, and this is addressed in our data-driven model by providing an estimate for the detection rate. Our novel top-down model is based on CDEs with stochastic constitutive parameters obtained from the DCD using Bayesian inference. We demonstrate the robustness of our algorithm for simulation studies using synthetic DCD, and nowcasting COVID-19 using real DCD from several regions across five continents.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"10 1","pages":"34 - 67"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A surrogate Bayesian framework for a SARS-CoV-2 data driven stochastic model\",\"authors\":\"M. Ganesh, S. Hawkins\",\"doi\":\"10.1515/cmb-2022-0131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Dynamic compartmentalized data (DCD) and compartmentalized differential equations (CDEs) are key instruments for modeling transmission of pathogens such as the SARS-CoV-2 virus. We describe an effi-cient nowcasting algorithm for modeling transmission of SARS-CoV-2 with uncertainty quantification for the COVID-19 impact. A key concern for transmission of SARS-CoV-2 is under-reporting of cases, and this is addressed in our data-driven model by providing an estimate for the detection rate. Our novel top-down model is based on CDEs with stochastic constitutive parameters obtained from the DCD using Bayesian inference. We demonstrate the robustness of our algorithm for simulation studies using synthetic DCD, and nowcasting COVID-19 using real DCD from several regions across five continents.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"10 1\",\"pages\":\"34 - 67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmb-2022-0131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2022-0131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要动态分区数据(DCD)和分区微分方程(CDE)是模拟严重急性呼吸系统综合征冠状病毒2型病毒等病原体传播的关键工具。我们描述了一种有效的实时预报算法,用于建模SARS-CoV-2的传播,并对新冠肺炎的影响进行不确定性量化。严重急性呼吸系统综合征冠状病毒2型传播的一个关键问题是病例报告不足,我们的数据驱动模型通过提供检测率的估计来解决这一问题。我们新的自上而下模型基于CDE,其随机本构参数使用贝叶斯推理从DCD获得。我们展示了我们的算法的鲁棒性,用于使用合成DCD进行模拟研究,以及使用五大洲多个地区的真实DCD实时预报新冠肺炎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A surrogate Bayesian framework for a SARS-CoV-2 data driven stochastic model
Abstract Dynamic compartmentalized data (DCD) and compartmentalized differential equations (CDEs) are key instruments for modeling transmission of pathogens such as the SARS-CoV-2 virus. We describe an effi-cient nowcasting algorithm for modeling transmission of SARS-CoV-2 with uncertainty quantification for the COVID-19 impact. A key concern for transmission of SARS-CoV-2 is under-reporting of cases, and this is addressed in our data-driven model by providing an estimate for the detection rate. Our novel top-down model is based on CDEs with stochastic constitutive parameters obtained from the DCD using Bayesian inference. We demonstrate the robustness of our algorithm for simulation studies using synthetic DCD, and nowcasting COVID-19 using real DCD from several regions across five continents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信