{"title":"岩石记录中因果关系的保存","authors":"Michael P. D'Antonio, D. Ibarra, C. Boyce","doi":"10.1017/pab.2022.33","DOIUrl":null,"url":null,"abstract":"Abstract. Evolutionary events may impact the geological carbon cycle via transient imbalances in silicate weathering, and such events have been implicated as causes of glaciations, mass extinctions, and oceanic anoxia. However, suggested evolutionary causes often substantially predate the environmental effects to which they are linked—problematic when carbon cycle perturbations must be resolved in less than a million years to maintain Earth's habitability. What is more, the geochemical signatures of such perturbations are recorded as they occur in widely distributed marine sedimentary rocks that have been densely sampled for important intervals in Earth history, whereas the fossil record—particularly on land—is governed by the availability of sedimentary basins that are patchy in both space and time, necessitating lags between the origination of an evolutionary lineage and its earliest occurrence in the fossil record. Here, we present a simple model of the impact of preservational filtering on sampling to show that an evolutionary event that causes an environmental perturbation via weathering imbalance should not appear earlier in the rock record than the perturbation itself and, if anything, should appear later rather than simultaneously. The Devonian Hangenberg glaciation provides an example of how evolutionary events might be more fruitfully considered as potential causes of environmental perturbations. Just as the last samplings of species lost in mass extinction are expected to come before the true environmental event, first appearance should be expected to postdate the geological expression of a lineage's environmental impact with important implications for our reading of Earth history.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"49 1","pages":"204 - 214"},"PeriodicalIF":2.6000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The preservation of cause and effect in the rock record\",\"authors\":\"Michael P. D'Antonio, D. Ibarra, C. Boyce\",\"doi\":\"10.1017/pab.2022.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Evolutionary events may impact the geological carbon cycle via transient imbalances in silicate weathering, and such events have been implicated as causes of glaciations, mass extinctions, and oceanic anoxia. However, suggested evolutionary causes often substantially predate the environmental effects to which they are linked—problematic when carbon cycle perturbations must be resolved in less than a million years to maintain Earth's habitability. What is more, the geochemical signatures of such perturbations are recorded as they occur in widely distributed marine sedimentary rocks that have been densely sampled for important intervals in Earth history, whereas the fossil record—particularly on land—is governed by the availability of sedimentary basins that are patchy in both space and time, necessitating lags between the origination of an evolutionary lineage and its earliest occurrence in the fossil record. Here, we present a simple model of the impact of preservational filtering on sampling to show that an evolutionary event that causes an environmental perturbation via weathering imbalance should not appear earlier in the rock record than the perturbation itself and, if anything, should appear later rather than simultaneously. The Devonian Hangenberg glaciation provides an example of how evolutionary events might be more fruitfully considered as potential causes of environmental perturbations. Just as the last samplings of species lost in mass extinction are expected to come before the true environmental event, first appearance should be expected to postdate the geological expression of a lineage's environmental impact with important implications for our reading of Earth history.\",\"PeriodicalId\":54646,\"journal\":{\"name\":\"Paleobiology\",\"volume\":\"49 1\",\"pages\":\"204 - 214\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/pab.2022.33\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleobiology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/pab.2022.33","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
The preservation of cause and effect in the rock record
Abstract. Evolutionary events may impact the geological carbon cycle via transient imbalances in silicate weathering, and such events have been implicated as causes of glaciations, mass extinctions, and oceanic anoxia. However, suggested evolutionary causes often substantially predate the environmental effects to which they are linked—problematic when carbon cycle perturbations must be resolved in less than a million years to maintain Earth's habitability. What is more, the geochemical signatures of such perturbations are recorded as they occur in widely distributed marine sedimentary rocks that have been densely sampled for important intervals in Earth history, whereas the fossil record—particularly on land—is governed by the availability of sedimentary basins that are patchy in both space and time, necessitating lags between the origination of an evolutionary lineage and its earliest occurrence in the fossil record. Here, we present a simple model of the impact of preservational filtering on sampling to show that an evolutionary event that causes an environmental perturbation via weathering imbalance should not appear earlier in the rock record than the perturbation itself and, if anything, should appear later rather than simultaneously. The Devonian Hangenberg glaciation provides an example of how evolutionary events might be more fruitfully considered as potential causes of environmental perturbations. Just as the last samplings of species lost in mass extinction are expected to come before the true environmental event, first appearance should be expected to postdate the geological expression of a lineage's environmental impact with important implications for our reading of Earth history.
期刊介绍:
Paleobiology publishes original contributions of any length (but normally 10-50 manuscript pages) dealing with any aspect of biological paleontology. Emphasis is placed on biological or paleobiological processes and patterns, including macroevolution, extinction, diversification, speciation, functional morphology, bio-geography, phylogeny, paleoecology, molecular paleontology, taphonomy, natural selection and patterns of variation, abundance, and distribution in space and time, among others. Taxonomic papers are welcome if they have significant and broad applications. Papers concerning research on recent organisms and systems are appropriate if they are of particular interest to paleontologists. Papers should typically interest readers from more than one specialty. Proposals for symposium volumes should be discussed in advance with the editors.