Vladimirov导数的Green函数与Tate论文

IF 1.2 3区 数学 Q1 MATHEMATICS
An Huang, Bogdan Stoica, S. Yau, X. Zhong
{"title":"Vladimirov导数的Green函数与Tate论文","authors":"An Huang, Bogdan Stoica, S. Yau, X. Zhong","doi":"10.4310/cntp.2021.v15.n2.a3","DOIUrl":null,"url":null,"abstract":"Given a number field $K$ with a Hecke character $\\chi$, for each place $\\nu$ we study the free scalar field theory whose kinetic term is given by the regularized Vladimirov derivative associated to the local component of $\\chi$. These theories appear in the study of $p$-adic string theory and $p$-adic AdS/CFT correspondence. We prove a formula for the regularized Vladimirov derivative in terms of the Fourier conjugate of the local component of $\\chi$. We find that the Green's function is given by the local functional equation for Zeta integrals. Furthermore, considering all places $\\nu$, the CFT two-point functions corresponding to the Green's functions satisfy an adelic product formula, which is equivalent to the global functional equation for Zeta integrals. In particular, this points out a role of Tate's thesis in adelic physics.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Green’s functions for Vladimirov derivatives and Tate’s thesis\",\"authors\":\"An Huang, Bogdan Stoica, S. Yau, X. Zhong\",\"doi\":\"10.4310/cntp.2021.v15.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a number field $K$ with a Hecke character $\\\\chi$, for each place $\\\\nu$ we study the free scalar field theory whose kinetic term is given by the regularized Vladimirov derivative associated to the local component of $\\\\chi$. These theories appear in the study of $p$-adic string theory and $p$-adic AdS/CFT correspondence. We prove a formula for the regularized Vladimirov derivative in terms of the Fourier conjugate of the local component of $\\\\chi$. We find that the Green's function is given by the local functional equation for Zeta integrals. Furthermore, considering all places $\\\\nu$, the CFT two-point functions corresponding to the Green's functions satisfy an adelic product formula, which is equivalent to the global functional equation for Zeta integrals. In particular, this points out a role of Tate's thesis in adelic physics.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2021.v15.n2.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2021.v15.n2.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

给定一个具有Hecke字符$\chi$的数域$K$,对于每一个位置$\nu$,我们研究自由标量场论,其动力学项由与$\chi$的局部分量相关的正则化Vladimirov导数给出。这些理论出现在$p$adic弦理论和$p$radic AdS/CFT对应关系的研究中。根据$\chi$局部分量的傅立叶共轭,我们证明了正则化Vladimirov导数的一个公式。我们发现格林函数是由Zeta积分的局部函数方程给出的。此外,考虑所有位置$\nu$,与Green函数相对应的CFT两点函数满足一个等价于Zeta积分的全局函数方程的乘积公式。这特别指出了泰特的论文在专业物理学中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green’s functions for Vladimirov derivatives and Tate’s thesis
Given a number field $K$ with a Hecke character $\chi$, for each place $\nu$ we study the free scalar field theory whose kinetic term is given by the regularized Vladimirov derivative associated to the local component of $\chi$. These theories appear in the study of $p$-adic string theory and $p$-adic AdS/CFT correspondence. We prove a formula for the regularized Vladimirov derivative in terms of the Fourier conjugate of the local component of $\chi$. We find that the Green's function is given by the local functional equation for Zeta integrals. Furthermore, considering all places $\nu$, the CFT two-point functions corresponding to the Green's functions satisfy an adelic product formula, which is equivalent to the global functional equation for Zeta integrals. In particular, this points out a role of Tate's thesis in adelic physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信