Setareh Dastyar Haghighi, Amal Khudair Khalaf, H. Mahmoudvand, A. Adineh, Ali Mohammad Maleki, Javad Ghasemian Yadegari
{"title":"Formononetin(一种天然的异黄酮)对棘球蚴的抗寄生虫作用及其细胞机制","authors":"Setareh Dastyar Haghighi, Amal Khudair Khalaf, H. Mahmoudvand, A. Adineh, Ali Mohammad Maleki, Javad Ghasemian Yadegari","doi":"10.5812/jjnpp-129302","DOIUrl":null,"url":null,"abstract":"Background: The chemical agents applied to reduce the complications of hydatid cyst surgery are not free of side effects. Formononetin (FMN), as a natural isoflavone, has been shown to have various therapeutic benefits. Objectives: We studied the in vitro and ex vivo protoscolicidal activity and cellular mechanisms of FMN against hydatid cyst protoscoleces. Methods: Formononetin at 75, 150, and 300 μg/mL was mixed with hydatid cyst protoscoleces (103/mL), and the viability was determined in 5 to 60 min through eosin staining assay. The effect of FMN on caspase-3 activity was tested through a commercial colorimetric protease kit. In addition, the penetrability of the plasma membrane of protoscoleces after exposure to FMN was also determined by the SYTOX assay. Results: Formononetin at 300 μg/mL completely destroyed hydatid cyst protoscoleces after 30 minutes. While at 150 μg/mL, after 60 minutes of contact, 100% of protoscoleces were eliminated. By ex vivo assay, FMN showed its antiparasitic effect for longer periods. Based on these results, FMN at 300 μg/mL concentration completely eliminated hydatid cyst protoscoleces after 60 minutes of exposure. While at a concentration of 150 μg/mL after 60 minutes, 89.6% of protoscoleces were destroyed. Formononetin noticeably increased (P < 0.001) the activity of caspase-3 and the permeability of protoscoleces dose-dependently. Conclusions: Formononetin as a natural product showed promising effects on the protoscoleces of hydatid cysts, indicating that it can be considered a valuable scolicidal agent. However, additional investigations are necessary to evaluate its efficacy in animal models and human subjects.","PeriodicalId":17745,"journal":{"name":"Jundishapur Journal of Natural Pharmaceutical Products","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antiparasitic Effects and Cellular Mechanisms of Formononetin (a Natural Isoflavone) Against Hydatid Cyst Protoscoleces\",\"authors\":\"Setareh Dastyar Haghighi, Amal Khudair Khalaf, H. Mahmoudvand, A. Adineh, Ali Mohammad Maleki, Javad Ghasemian Yadegari\",\"doi\":\"10.5812/jjnpp-129302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The chemical agents applied to reduce the complications of hydatid cyst surgery are not free of side effects. Formononetin (FMN), as a natural isoflavone, has been shown to have various therapeutic benefits. Objectives: We studied the in vitro and ex vivo protoscolicidal activity and cellular mechanisms of FMN against hydatid cyst protoscoleces. Methods: Formononetin at 75, 150, and 300 μg/mL was mixed with hydatid cyst protoscoleces (103/mL), and the viability was determined in 5 to 60 min through eosin staining assay. The effect of FMN on caspase-3 activity was tested through a commercial colorimetric protease kit. In addition, the penetrability of the plasma membrane of protoscoleces after exposure to FMN was also determined by the SYTOX assay. Results: Formononetin at 300 μg/mL completely destroyed hydatid cyst protoscoleces after 30 minutes. While at 150 μg/mL, after 60 minutes of contact, 100% of protoscoleces were eliminated. By ex vivo assay, FMN showed its antiparasitic effect for longer periods. Based on these results, FMN at 300 μg/mL concentration completely eliminated hydatid cyst protoscoleces after 60 minutes of exposure. While at a concentration of 150 μg/mL after 60 minutes, 89.6% of protoscoleces were destroyed. Formononetin noticeably increased (P < 0.001) the activity of caspase-3 and the permeability of protoscoleces dose-dependently. Conclusions: Formononetin as a natural product showed promising effects on the protoscoleces of hydatid cysts, indicating that it can be considered a valuable scolicidal agent. However, additional investigations are necessary to evaluate its efficacy in animal models and human subjects.\",\"PeriodicalId\":17745,\"journal\":{\"name\":\"Jundishapur Journal of Natural Pharmaceutical Products\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jundishapur Journal of Natural Pharmaceutical Products\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5812/jjnpp-129302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jundishapur Journal of Natural Pharmaceutical Products","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/jjnpp-129302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Antiparasitic Effects and Cellular Mechanisms of Formononetin (a Natural Isoflavone) Against Hydatid Cyst Protoscoleces
Background: The chemical agents applied to reduce the complications of hydatid cyst surgery are not free of side effects. Formononetin (FMN), as a natural isoflavone, has been shown to have various therapeutic benefits. Objectives: We studied the in vitro and ex vivo protoscolicidal activity and cellular mechanisms of FMN against hydatid cyst protoscoleces. Methods: Formononetin at 75, 150, and 300 μg/mL was mixed with hydatid cyst protoscoleces (103/mL), and the viability was determined in 5 to 60 min through eosin staining assay. The effect of FMN on caspase-3 activity was tested through a commercial colorimetric protease kit. In addition, the penetrability of the plasma membrane of protoscoleces after exposure to FMN was also determined by the SYTOX assay. Results: Formononetin at 300 μg/mL completely destroyed hydatid cyst protoscoleces after 30 minutes. While at 150 μg/mL, after 60 minutes of contact, 100% of protoscoleces were eliminated. By ex vivo assay, FMN showed its antiparasitic effect for longer periods. Based on these results, FMN at 300 μg/mL concentration completely eliminated hydatid cyst protoscoleces after 60 minutes of exposure. While at a concentration of 150 μg/mL after 60 minutes, 89.6% of protoscoleces were destroyed. Formononetin noticeably increased (P < 0.001) the activity of caspase-3 and the permeability of protoscoleces dose-dependently. Conclusions: Formononetin as a natural product showed promising effects on the protoscoleces of hydatid cysts, indicating that it can be considered a valuable scolicidal agent. However, additional investigations are necessary to evaluate its efficacy in animal models and human subjects.