J. Hunter, M. Marasco, Ilerioluwa Sowande, N. P. Hilliard
{"title":"那不勒斯卤硫杆菌固碳能源的蛋白质组学研究","authors":"J. Hunter, M. Marasco, Ilerioluwa Sowande, N. P. Hilliard","doi":"10.54119/jaas.2019.7326","DOIUrl":null,"url":null,"abstract":"Through the use of proteomics, it was uncovered that the autotrophic, aerobic purple sulfur bacterium Halothiobacillus neapolitanus displays changes in cellular levels of portions of its carbon dioxide uptake and fixation mechanisms upon switch from bicarbonate to CO2(g) as carbon source. This includes an increase in level of a heterodimeric bicarbonate transporter along with a potential switch between form I and form II of RubisCO. Additional changes are seen in several sulfur oxidation pathways, which may indicate a link between sulfur oxidation pathways as an energy source and carbon uptake/fixation mechanisms.","PeriodicalId":30423,"journal":{"name":"Journal of the Arkansas Academy of Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Proteomics of Carbon Fixation Energy Sources in Halothiobacillus neapolitanus\",\"authors\":\"J. Hunter, M. Marasco, Ilerioluwa Sowande, N. P. Hilliard\",\"doi\":\"10.54119/jaas.2019.7326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through the use of proteomics, it was uncovered that the autotrophic, aerobic purple sulfur bacterium Halothiobacillus neapolitanus displays changes in cellular levels of portions of its carbon dioxide uptake and fixation mechanisms upon switch from bicarbonate to CO2(g) as carbon source. This includes an increase in level of a heterodimeric bicarbonate transporter along with a potential switch between form I and form II of RubisCO. Additional changes are seen in several sulfur oxidation pathways, which may indicate a link between sulfur oxidation pathways as an energy source and carbon uptake/fixation mechanisms.\",\"PeriodicalId\":30423,\"journal\":{\"name\":\"Journal of the Arkansas Academy of Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Arkansas Academy of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54119/jaas.2019.7326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Arkansas Academy of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54119/jaas.2019.7326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proteomics of Carbon Fixation Energy Sources in Halothiobacillus neapolitanus
Through the use of proteomics, it was uncovered that the autotrophic, aerobic purple sulfur bacterium Halothiobacillus neapolitanus displays changes in cellular levels of portions of its carbon dioxide uptake and fixation mechanisms upon switch from bicarbonate to CO2(g) as carbon source. This includes an increase in level of a heterodimeric bicarbonate transporter along with a potential switch between form I and form II of RubisCO. Additional changes are seen in several sulfur oxidation pathways, which may indicate a link between sulfur oxidation pathways as an energy source and carbon uptake/fixation mechanisms.