{"title":"有限存在群的等周谱","authors":"M. Sapir","doi":"10.4171/JCA/2-4-2","DOIUrl":null,"url":null,"abstract":"The isoperimeric spectrum consists of all real positive numbers $\\alpha$ such that $O(n^\\alpha)$ is the Dehn function of a finitely presented group. In this note we show how a recent result of Olshanskii completes the description of the isoperimetric spectrum modulo the celebrated Computer Science conjecture (and one of the seven Millennium Problems) $\\mathbf{P=NP}$ and even a formally weaker conjecture.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2018-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JCA/2-4-2","citationCount":"1","resultStr":"{\"title\":\"The isoperimetric spectrum of finitely presented groups\",\"authors\":\"M. Sapir\",\"doi\":\"10.4171/JCA/2-4-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The isoperimeric spectrum consists of all real positive numbers $\\\\alpha$ such that $O(n^\\\\alpha)$ is the Dehn function of a finitely presented group. In this note we show how a recent result of Olshanskii completes the description of the isoperimetric spectrum modulo the celebrated Computer Science conjecture (and one of the seven Millennium Problems) $\\\\mathbf{P=NP}$ and even a formally weaker conjecture.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JCA/2-4-2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JCA/2-4-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/2-4-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The isoperimetric spectrum of finitely presented groups
The isoperimeric spectrum consists of all real positive numbers $\alpha$ such that $O(n^\alpha)$ is the Dehn function of a finitely presented group. In this note we show how a recent result of Olshanskii completes the description of the isoperimetric spectrum modulo the celebrated Computer Science conjecture (and one of the seven Millennium Problems) $\mathbf{P=NP}$ and even a formally weaker conjecture.