{"title":"关于圆微分同胚的投影导数共循环","authors":"A. Navas, M. Ponce","doi":"10.4310/mrl.2022.v29.n6.a10","DOIUrl":null,"url":null,"abstract":"We study the projective derivative as a cocycle of Mobius transformations over groups of circle diffeomorphisms. By computing precise expressions for this cocycle, we obtain several results about reducibility and almost reducibility to a cocycle of rotations. We also introduce an extension of this cocycle to the diagonal action on the 3-torus for which we generalize the previous results.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the projective derivative cocycle for circle diffeomorphisms\",\"authors\":\"A. Navas, M. Ponce\",\"doi\":\"10.4310/mrl.2022.v29.n6.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the projective derivative as a cocycle of Mobius transformations over groups of circle diffeomorphisms. By computing precise expressions for this cocycle, we obtain several results about reducibility and almost reducibility to a cocycle of rotations. We also introduce an extension of this cocycle to the diagonal action on the 3-torus for which we generalize the previous results.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2022.v29.n6.a10\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n6.a10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the projective derivative cocycle for circle diffeomorphisms
We study the projective derivative as a cocycle of Mobius transformations over groups of circle diffeomorphisms. By computing precise expressions for this cocycle, we obtain several results about reducibility and almost reducibility to a cocycle of rotations. We also introduce an extension of this cocycle to the diagonal action on the 3-torus for which we generalize the previous results.
期刊介绍:
Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.