{"title":"含混合导数的二维椭圆型和抛物型方程的高阶紧致差分方法","authors":"Tingfu Ma, Y. Ge","doi":"10.32513/tbilisi/1608606055","DOIUrl":null,"url":null,"abstract":"In this article, firstly, based on Taylor series expansion and truncation error correction technology, combined with the fourth-order Pade schemes of the first-order derivatives, a new fourth-order compact difference (CD) scheme is constructed to solve the two-dimensional (2D) linear elliptic equation a mixed derivative. In this new scheme, unknown function and its first-order derivatives are regarded as the unknown variables in calculation. Then, the method is extended to solve the 2D parabolic equation with a mixed derivative. To match the spatial fourth-order accuracy, The backward differentiation formula (BDF) is employed to gain the fourth-order accuracy for the temporal discretization. Truncation error is analyzed to display that the present scheme is fourth-order accuracy in space. In order to solve the resulting large-scale linear equations, a multigrid method is employed to accelerate the convergence speed of the conventional relaxation methods. Finally, numerical results indicate that the present schemes obtain fourth-order convergence and are more accurate than those in the literature.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":"13 1","pages":"141-167"},"PeriodicalIF":0.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-order compact difference method for two-dimension elliptic and parabolic equations with mixed derivatives\",\"authors\":\"Tingfu Ma, Y. Ge\",\"doi\":\"10.32513/tbilisi/1608606055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, firstly, based on Taylor series expansion and truncation error correction technology, combined with the fourth-order Pade schemes of the first-order derivatives, a new fourth-order compact difference (CD) scheme is constructed to solve the two-dimensional (2D) linear elliptic equation a mixed derivative. In this new scheme, unknown function and its first-order derivatives are regarded as the unknown variables in calculation. Then, the method is extended to solve the 2D parabolic equation with a mixed derivative. To match the spatial fourth-order accuracy, The backward differentiation formula (BDF) is employed to gain the fourth-order accuracy for the temporal discretization. Truncation error is analyzed to display that the present scheme is fourth-order accuracy in space. In order to solve the resulting large-scale linear equations, a multigrid method is employed to accelerate the convergence speed of the conventional relaxation methods. Finally, numerical results indicate that the present schemes obtain fourth-order convergence and are more accurate than those in the literature.\",\"PeriodicalId\":43977,\"journal\":{\"name\":\"Tbilisi Mathematical Journal\",\"volume\":\"13 1\",\"pages\":\"141-167\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tbilisi Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32513/tbilisi/1608606055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tbilisi/1608606055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
High-order compact difference method for two-dimension elliptic and parabolic equations with mixed derivatives
In this article, firstly, based on Taylor series expansion and truncation error correction technology, combined with the fourth-order Pade schemes of the first-order derivatives, a new fourth-order compact difference (CD) scheme is constructed to solve the two-dimensional (2D) linear elliptic equation a mixed derivative. In this new scheme, unknown function and its first-order derivatives are regarded as the unknown variables in calculation. Then, the method is extended to solve the 2D parabolic equation with a mixed derivative. To match the spatial fourth-order accuracy, The backward differentiation formula (BDF) is employed to gain the fourth-order accuracy for the temporal discretization. Truncation error is analyzed to display that the present scheme is fourth-order accuracy in space. In order to solve the resulting large-scale linear equations, a multigrid method is employed to accelerate the convergence speed of the conventional relaxation methods. Finally, numerical results indicate that the present schemes obtain fourth-order convergence and are more accurate than those in the literature.