{"title":"三维疏水Cu/木材/Cu多孔复合材料的有效电磁干扰屏蔽","authors":"Yanfei Pan, Shuaiqi Hu, Xin Zheng, Nianguang Hu, Fengqi Qiu, Mayin Dai, Qi Guo, Xiaofang Yu, Yinan Hao, Minyan Lv, Jintian Huang","doi":"10.1080/02773813.2023.2213691","DOIUrl":null,"url":null,"abstract":"Abstract Three-dimensional hydrophobic and efficient electromagnetic shielding Cu/wood/Cu laminated composites were prepared by a simple one-step electroless Cu process. The number of electroless Cu on wood surface and the treatment time of electroless Cu were used as variables. The effects of independent variables in the range from 0.3 ×10−3 to 3.0 GHz (L-band) on the conductivity, water contact angle and electromagnetic shielding effectiveness of the composite were analyzed. The Cu particles are fully filled in the wood hierarchical porous structure, and the metal coating uniformly covers the entire wood surface. After three times of electroless Cu, the conductivity of the composite can reach 7255 S/cm, the contact angle is 130.8° when the time is 12 min, showing good hydrophobic properties, and the average electromagnetic shielding effectiveness is as high as 96 dB. Compared with the L-band (94 dB), the twice electroless sample has a maximum shielding effectiveness of 85.6 dB in the X-band (8.2-12.4 GHz), which can shield a large number of incident electromagnetic waves to achieve high absorption and low reflection. The anisotropic internal porous structure of wood matrix and the multi-interface polarization between wood and Cu are the main reasons for the effective electromagnetic interference shielding performance of Cu/wood/Cu laminated composites.","PeriodicalId":17493,"journal":{"name":"Journal of Wood Chemistry and Technology","volume":"43 1","pages":"206 - 220"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient electromagnetic interference shielding of three-dimensional hydrophobic Cu/wood/Cu porous composites\",\"authors\":\"Yanfei Pan, Shuaiqi Hu, Xin Zheng, Nianguang Hu, Fengqi Qiu, Mayin Dai, Qi Guo, Xiaofang Yu, Yinan Hao, Minyan Lv, Jintian Huang\",\"doi\":\"10.1080/02773813.2023.2213691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Three-dimensional hydrophobic and efficient electromagnetic shielding Cu/wood/Cu laminated composites were prepared by a simple one-step electroless Cu process. The number of electroless Cu on wood surface and the treatment time of electroless Cu were used as variables. The effects of independent variables in the range from 0.3 ×10−3 to 3.0 GHz (L-band) on the conductivity, water contact angle and electromagnetic shielding effectiveness of the composite were analyzed. The Cu particles are fully filled in the wood hierarchical porous structure, and the metal coating uniformly covers the entire wood surface. After three times of electroless Cu, the conductivity of the composite can reach 7255 S/cm, the contact angle is 130.8° when the time is 12 min, showing good hydrophobic properties, and the average electromagnetic shielding effectiveness is as high as 96 dB. Compared with the L-band (94 dB), the twice electroless sample has a maximum shielding effectiveness of 85.6 dB in the X-band (8.2-12.4 GHz), which can shield a large number of incident electromagnetic waves to achieve high absorption and low reflection. The anisotropic internal porous structure of wood matrix and the multi-interface polarization between wood and Cu are the main reasons for the effective electromagnetic interference shielding performance of Cu/wood/Cu laminated composites.\",\"PeriodicalId\":17493,\"journal\":{\"name\":\"Journal of Wood Chemistry and Technology\",\"volume\":\"43 1\",\"pages\":\"206 - 220\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wood Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02773813.2023.2213691\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02773813.2023.2213691","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Efficient electromagnetic interference shielding of three-dimensional hydrophobic Cu/wood/Cu porous composites
Abstract Three-dimensional hydrophobic and efficient electromagnetic shielding Cu/wood/Cu laminated composites were prepared by a simple one-step electroless Cu process. The number of electroless Cu on wood surface and the treatment time of electroless Cu were used as variables. The effects of independent variables in the range from 0.3 ×10−3 to 3.0 GHz (L-band) on the conductivity, water contact angle and electromagnetic shielding effectiveness of the composite were analyzed. The Cu particles are fully filled in the wood hierarchical porous structure, and the metal coating uniformly covers the entire wood surface. After three times of electroless Cu, the conductivity of the composite can reach 7255 S/cm, the contact angle is 130.8° when the time is 12 min, showing good hydrophobic properties, and the average electromagnetic shielding effectiveness is as high as 96 dB. Compared with the L-band (94 dB), the twice electroless sample has a maximum shielding effectiveness of 85.6 dB in the X-band (8.2-12.4 GHz), which can shield a large number of incident electromagnetic waves to achieve high absorption and low reflection. The anisotropic internal porous structure of wood matrix and the multi-interface polarization between wood and Cu are the main reasons for the effective electromagnetic interference shielding performance of Cu/wood/Cu laminated composites.
期刊介绍:
The Journal of Wood Chemistry and Technology (JWCT) is focused on the rapid publication of research advances in the chemistry of bio-based materials and products, including all aspects of wood-based polymers, chemicals, materials, and technology. JWCT provides an international forum for researchers and manufacturers working in wood-based biopolymers and chemicals, synthesis and characterization, as well as the chemistry of biomass conversion and utilization.
JWCT primarily publishes original research papers and communications, and occasionally invited review articles and special issues. Special issues must summarize and analyze state-of-the-art developments within the field of biomass chemistry, or be in tribute to the career of a distinguished researcher. If you wish to suggest a special issue for the Journal, please email the Editor-in-Chief a detailed proposal that includes the topic, a list of potential contributors, and a time-line.