{"title":"环格上局部化模式的Snaking分岔","authors":"Moyi Tian;Jason J Bramburger;Björn Sandstede","doi":"10.1093/imamat/hxab023","DOIUrl":null,"url":null,"abstract":"We study the structure of stationary patterns in bistable lattice dynamical systems posed on rings with a symmetric coupling structure in the regime of small coupling strength. We show that sparse coupling (for instance, nearest-neighbour or next-nearest-neighbour coupling) and all-to-all coupling lead to significantly different solution branches. In particular, sparse coupling leads to snaking branches with many saddle-node bifurcations, while all-to-all coupling leads to branches with six saddle nodes, regardless of the size of the number of nodes in the graph.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":"86 5","pages":"1112-1140"},"PeriodicalIF":1.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Snaking bifurcations of localized patterns on ring lattices\",\"authors\":\"Moyi Tian;Jason J Bramburger;Björn Sandstede\",\"doi\":\"10.1093/imamat/hxab023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the structure of stationary patterns in bistable lattice dynamical systems posed on rings with a symmetric coupling structure in the regime of small coupling strength. We show that sparse coupling (for instance, nearest-neighbour or next-nearest-neighbour coupling) and all-to-all coupling lead to significantly different solution branches. In particular, sparse coupling leads to snaking branches with many saddle-node bifurcations, while all-to-all coupling leads to branches with six saddle nodes, regardless of the size of the number of nodes in the graph.\",\"PeriodicalId\":56297,\"journal\":{\"name\":\"IMA Journal of Applied Mathematics\",\"volume\":\"86 5\",\"pages\":\"1112-1140\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9619536/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9619536/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Snaking bifurcations of localized patterns on ring lattices
We study the structure of stationary patterns in bistable lattice dynamical systems posed on rings with a symmetric coupling structure in the regime of small coupling strength. We show that sparse coupling (for instance, nearest-neighbour or next-nearest-neighbour coupling) and all-to-all coupling lead to significantly different solution branches. In particular, sparse coupling leads to snaking branches with many saddle-node bifurcations, while all-to-all coupling leads to branches with six saddle nodes, regardless of the size of the number of nodes in the graph.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.