地板、天花板、坡度和K理论

IF 0.5 Q3 MATHEMATICS
Yuri J. F. Sulyma
{"title":"地板、天花板、坡度和K理论","authors":"Yuri J. F. Sulyma","doi":"10.2140/akt.2023.8.331","DOIUrl":null,"url":null,"abstract":"We calculate $\\mathrm K_*(k[x]/x^e;\\mathbf Z_p)$ by evaluating the syntomic cohomology $\\mathbf Z_p(i)(k[x]/x^e)$ introduced by Bhatt-Morrow-Scholze and Bhatt-Scholze. This recovers calculations of Hesselholt-Madsen and Speirs, and generalizes an example of Mathew treating the case $e=2$ and $p>2$. Our main innovation is systematic use of the floor and ceiling functions, which clarifies matters substantially even for $e=2$. We furthermore observe a persistent phenomenon of slopes. As an application, we answer some questions of Hesselholt.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Floor, ceiling, slopes, and K-theory\",\"authors\":\"Yuri J. F. Sulyma\",\"doi\":\"10.2140/akt.2023.8.331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We calculate $\\\\mathrm K_*(k[x]/x^e;\\\\mathbf Z_p)$ by evaluating the syntomic cohomology $\\\\mathbf Z_p(i)(k[x]/x^e)$ introduced by Bhatt-Morrow-Scholze and Bhatt-Scholze. This recovers calculations of Hesselholt-Madsen and Speirs, and generalizes an example of Mathew treating the case $e=2$ and $p>2$. Our main innovation is systematic use of the floor and ceiling functions, which clarifies matters substantially even for $e=2$. We furthermore observe a persistent phenomenon of slopes. As an application, we answer some questions of Hesselholt.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2023.8.331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2023.8.331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们通过评估由Bhatt Morrow Scholze和Bhatt Scholze引入的同组上同调$\mathbf Z_p(i)(K[x]/x^e)$来计算$\mathrm K_*(K[x/x^e;\mathbf-Z_p)$。这恢复了Hesselholt-Madsen和Speirs的计算,并推广了Mathew处理$e=2$和$p>2$情况的一个例子。我们的主要创新是系统地使用了地板和天花板功能,即使只需$2,也能大大澄清问题。此外,我们还观察到斜坡现象持续存在。作为一个应用,我们回答了Hesselholt的一些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Floor, ceiling, slopes, and K-theory
We calculate $\mathrm K_*(k[x]/x^e;\mathbf Z_p)$ by evaluating the syntomic cohomology $\mathbf Z_p(i)(k[x]/x^e)$ introduced by Bhatt-Morrow-Scholze and Bhatt-Scholze. This recovers calculations of Hesselholt-Madsen and Speirs, and generalizes an example of Mathew treating the case $e=2$ and $p>2$. Our main innovation is systematic use of the floor and ceiling functions, which clarifies matters substantially even for $e=2$. We furthermore observe a persistent phenomenon of slopes. As an application, we answer some questions of Hesselholt.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信