A. Pratap, A. Gorodkova, K. Patra, Aleksandr A. Dyakonov
{"title":"微磨削工件表面温度的有限差分数值模拟与实验验证","authors":"A. Pratap, A. Gorodkova, K. Patra, Aleksandr A. Dyakonov","doi":"10.1080/10910344.2023.2194964","DOIUrl":null,"url":null,"abstract":"Abstract The objective of this work is to characterize the heat transfer and temperature generation into the workpiece during micro-slot grinding. A numerical model for predicting micro-grinding temperature is established based on the finite difference method (FDM). Workpiece volume is divided into small elementary sections and temperature in small sections near and away from the machining zone is calculated using thermo-physical model as well as validated by experimentally measured temperature using infrared technique. Temperature in micro-slot grinding increases during vertical insertion of the tool and becomes stable when the tool transverse in the feed direction. Simulation results show that transient heat transfer becomes dominant on increased feed rate values that result in an overall lowering of heat supply into the surface. Results also reveal that modification in the tool design has a significant impact on the reduction of workpiece temperature due to reduced contact length, reduced cutting forces, friction, and rubbing at the tool-workpiece interface. The proposed model is capable of solving transient problems in micro-slot grinding and is flexible to deal with different boundary conditions. This analysis will help in temperature prediction and establishing temperature reduction strategies that could potentially increase machining precision.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite difference numerical modeling and experimental validation of workpiece surface temperature in micro-grinding\",\"authors\":\"A. Pratap, A. Gorodkova, K. Patra, Aleksandr A. Dyakonov\",\"doi\":\"10.1080/10910344.2023.2194964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The objective of this work is to characterize the heat transfer and temperature generation into the workpiece during micro-slot grinding. A numerical model for predicting micro-grinding temperature is established based on the finite difference method (FDM). Workpiece volume is divided into small elementary sections and temperature in small sections near and away from the machining zone is calculated using thermo-physical model as well as validated by experimentally measured temperature using infrared technique. Temperature in micro-slot grinding increases during vertical insertion of the tool and becomes stable when the tool transverse in the feed direction. Simulation results show that transient heat transfer becomes dominant on increased feed rate values that result in an overall lowering of heat supply into the surface. Results also reveal that modification in the tool design has a significant impact on the reduction of workpiece temperature due to reduced contact length, reduced cutting forces, friction, and rubbing at the tool-workpiece interface. The proposed model is capable of solving transient problems in micro-slot grinding and is flexible to deal with different boundary conditions. This analysis will help in temperature prediction and establishing temperature reduction strategies that could potentially increase machining precision.\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2023.2194964\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2023.2194964","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Finite difference numerical modeling and experimental validation of workpiece surface temperature in micro-grinding
Abstract The objective of this work is to characterize the heat transfer and temperature generation into the workpiece during micro-slot grinding. A numerical model for predicting micro-grinding temperature is established based on the finite difference method (FDM). Workpiece volume is divided into small elementary sections and temperature in small sections near and away from the machining zone is calculated using thermo-physical model as well as validated by experimentally measured temperature using infrared technique. Temperature in micro-slot grinding increases during vertical insertion of the tool and becomes stable when the tool transverse in the feed direction. Simulation results show that transient heat transfer becomes dominant on increased feed rate values that result in an overall lowering of heat supply into the surface. Results also reveal that modification in the tool design has a significant impact on the reduction of workpiece temperature due to reduced contact length, reduced cutting forces, friction, and rubbing at the tool-workpiece interface. The proposed model is capable of solving transient problems in micro-slot grinding and is flexible to deal with different boundary conditions. This analysis will help in temperature prediction and establishing temperature reduction strategies that could potentially increase machining precision.
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining