{"title":"K-ras原癌基因(KRAS):32种灵长类动物不可或缺的癌症预测和预后生物标志物的进化解剖","authors":"Leonard Whye Kit Lim","doi":"10.1016/j.angen.2023.200158","DOIUrl":null,"url":null,"abstract":"<div><p>The Kirsten rat sarcoma (KRAS) gene is one of the most critical proto-oncogene to target in combating various cancers as its mutation is one of the major cancer-causing causes in most cancers. In this study, we investigated all 32 primate KRAS nucleotide and protein sequences<span><span><span> found within the public GenBank database. The Tibetan macaque KRAS protein supersedes the others in terms of amino acid length, molecular weight and </span>isoelectric point. The motif distribution of the Tibetan macaque was also found to vary significantly from the other KRAS proteins examined. Nevertheless, the predicted protein three-dimensional structure of Tibetan macaque did not differ much from that of human and Ugandan red </span>colobus<span>. Fascinatingly, the Coquerel’s sifaka KRAS protein structure and conformation is distinctive from all other 31 primate KRAS proteins. The maximum likelihood phylogenetic tree revealed several potential candidates that are closely related to that of the human KRAS protein to aid future human personalised therapy studies.</span></span></p></div>","PeriodicalId":7893,"journal":{"name":"Animal Gene","volume":"30 ","pages":"Article 200158"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-ras proto-oncogene (KRAS): Evolutionary dissection on the indispensable predictive and prognostic cancer biomarker across 32 primates\",\"authors\":\"Leonard Whye Kit Lim\",\"doi\":\"10.1016/j.angen.2023.200158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Kirsten rat sarcoma (KRAS) gene is one of the most critical proto-oncogene to target in combating various cancers as its mutation is one of the major cancer-causing causes in most cancers. In this study, we investigated all 32 primate KRAS nucleotide and protein sequences<span><span><span> found within the public GenBank database. The Tibetan macaque KRAS protein supersedes the others in terms of amino acid length, molecular weight and </span>isoelectric point. The motif distribution of the Tibetan macaque was also found to vary significantly from the other KRAS proteins examined. Nevertheless, the predicted protein three-dimensional structure of Tibetan macaque did not differ much from that of human and Ugandan red </span>colobus<span>. Fascinatingly, the Coquerel’s sifaka KRAS protein structure and conformation is distinctive from all other 31 primate KRAS proteins. The maximum likelihood phylogenetic tree revealed several potential candidates that are closely related to that of the human KRAS protein to aid future human personalised therapy studies.</span></span></p></div>\",\"PeriodicalId\":7893,\"journal\":{\"name\":\"Animal Gene\",\"volume\":\"30 \",\"pages\":\"Article 200158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352406523000143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352406523000143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
K-ras proto-oncogene (KRAS): Evolutionary dissection on the indispensable predictive and prognostic cancer biomarker across 32 primates
The Kirsten rat sarcoma (KRAS) gene is one of the most critical proto-oncogene to target in combating various cancers as its mutation is one of the major cancer-causing causes in most cancers. In this study, we investigated all 32 primate KRAS nucleotide and protein sequences found within the public GenBank database. The Tibetan macaque KRAS protein supersedes the others in terms of amino acid length, molecular weight and isoelectric point. The motif distribution of the Tibetan macaque was also found to vary significantly from the other KRAS proteins examined. Nevertheless, the predicted protein three-dimensional structure of Tibetan macaque did not differ much from that of human and Ugandan red colobus. Fascinatingly, the Coquerel’s sifaka KRAS protein structure and conformation is distinctive from all other 31 primate KRAS proteins. The maximum likelihood phylogenetic tree revealed several potential candidates that are closely related to that of the human KRAS protein to aid future human personalised therapy studies.
Animal GeneAgricultural and Biological Sciences-Insect Science
自引率
0.00%
发文量
16
期刊介绍:
Gene Reports publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses. Gene Reports strives to be a very diverse journal and topics in all fields will be considered for publication. Although not limited to the following, some general topics include: DNA Organization, Replication & Evolution -Focus on genomic DNA (chromosomal organization, comparative genomics, DNA replication, DNA repair, mobile DNA, mitochondrial DNA, chloroplast DNA). Expression & Function - Focus on functional RNAs (microRNAs, tRNAs, rRNAs, mRNA splicing, alternative polyadenylation) Regulation - Focus on processes that mediate gene-read out (epigenetics, chromatin, histone code, transcription, translation, protein degradation). Cell Signaling - Focus on mechanisms that control information flow into the nucleus to control gene expression (kinase and phosphatase pathways controlled by extra-cellular ligands, Wnt, Notch, TGFbeta/BMPs, FGFs, IGFs etc.) Profiling of gene expression and genetic variation - Focus on high throughput approaches (e.g., DeepSeq, ChIP-Seq, Affymetrix microarrays, proteomics) that define gene regulatory circuitry, molecular pathways and protein/protein networks. Genetics - Focus on development in model organisms (e.g., mouse, frog, fruit fly, worm), human genetic variation, population genetics, as well as agricultural and veterinary genetics. Molecular Pathology & Regenerative Medicine - Focus on the deregulation of molecular processes in human diseases and mechanisms supporting regeneration of tissues through pluripotent or multipotent stem cells.