几乎coKähler流形上的某些类型的度量

IF 0.5 Q3 MATHEMATICS
Devaraja Mallesha Naik, V. Venkatesha, H. Aruna Kumara
{"title":"几乎coKähler流形上的某些类型的度量","authors":"Devaraja Mallesha Naik,&nbsp;V. Venkatesha,&nbsp;H. Aruna Kumara","doi":"10.1007/s40316-021-00162-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study an almost coKähler manifold admitting certain metrics such as <span>\\(*\\)</span>-Ricci solitons, satisfying the critical point equation (CPE) or Bach flat. First, we consider a coKähler 3-manifold (<i>M</i>, <i>g</i>) admitting a <span>\\(*\\)</span>-Ricci soliton (<i>g</i>, <i>X</i>) and we show in this case that either <i>M</i> is locally flat or <i>X</i> is an infinitesimal contact transformation. Next, we study non-coKähler <span>\\((\\kappa ,\\mu )\\)</span>-almost coKähler metrics as CPE metrics and prove that such a <i>g</i> cannot be a solution of CPE with non-trivial function <i>f</i>. Finally, we prove that a <span>\\((\\kappa , \\mu )\\)</span>-almost coKähler manifold (<i>M</i>, <i>g</i>) is coKähler if either <i>M</i> admits a divergence free Cotton tensor or the metric <i>g</i> is Bach flat. In contrast to this, we show by a suitable example that there are Bach flat almost coKähler manifolds which are non-coKähler.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"47 2","pages":"331 - 347"},"PeriodicalIF":0.5000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-021-00162-w","citationCount":"8","resultStr":"{\"title\":\"Certain types of metrics on almost coKähler manifolds\",\"authors\":\"Devaraja Mallesha Naik,&nbsp;V. Venkatesha,&nbsp;H. Aruna Kumara\",\"doi\":\"10.1007/s40316-021-00162-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study an almost coKähler manifold admitting certain metrics such as <span>\\\\(*\\\\)</span>-Ricci solitons, satisfying the critical point equation (CPE) or Bach flat. First, we consider a coKähler 3-manifold (<i>M</i>, <i>g</i>) admitting a <span>\\\\(*\\\\)</span>-Ricci soliton (<i>g</i>, <i>X</i>) and we show in this case that either <i>M</i> is locally flat or <i>X</i> is an infinitesimal contact transformation. Next, we study non-coKähler <span>\\\\((\\\\kappa ,\\\\mu )\\\\)</span>-almost coKähler metrics as CPE metrics and prove that such a <i>g</i> cannot be a solution of CPE with non-trivial function <i>f</i>. Finally, we prove that a <span>\\\\((\\\\kappa , \\\\mu )\\\\)</span>-almost coKähler manifold (<i>M</i>, <i>g</i>) is coKähler if either <i>M</i> admits a divergence free Cotton tensor or the metric <i>g</i> is Bach flat. In contrast to this, we show by a suitable example that there are Bach flat almost coKähler manifolds which are non-coKähler.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"47 2\",\"pages\":\"331 - 347\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40316-021-00162-w\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-021-00162-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-021-00162-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们研究了一个几乎coKähler流形,它允许某些度量,如满足临界点方程(CPE)或Bach平面的\(*\)Ricci孤子。首先,我们考虑一个coKähler 3-流形(M,g)接纳一个\(*\)Ricci孤立子(g,X),在这种情况下,我们证明了M是局部平坦的,或者X是无穷小的接触变换。接下来,我们研究了非coKähler((kappa,\mu))-几乎coKáhler度量作为CPE度量,并证明了这样的g不可能是具有非平凡函数f的CPE的解。与此相反,我们通过一个合适的例子证明了存在巴赫平坦的几乎coKähler流形,这些流形是非coKáhler的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Certain types of metrics on almost coKähler manifolds

In this paper, we study an almost coKähler manifold admitting certain metrics such as \(*\)-Ricci solitons, satisfying the critical point equation (CPE) or Bach flat. First, we consider a coKähler 3-manifold (Mg) admitting a \(*\)-Ricci soliton (gX) and we show in this case that either M is locally flat or X is an infinitesimal contact transformation. Next, we study non-coKähler \((\kappa ,\mu )\)-almost coKähler metrics as CPE metrics and prove that such a g cannot be a solution of CPE with non-trivial function f. Finally, we prove that a \((\kappa , \mu )\)-almost coKähler manifold (Mg) is coKähler if either M admits a divergence free Cotton tensor or the metric g is Bach flat. In contrast to this, we show by a suitable example that there are Bach flat almost coKähler manifolds which are non-coKähler.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信