J. Smellie, W. Mcintosh, R. Whittle, A. Troedson, R. J. Hunt
{"title":"南设得兰群岛乔治王岛东部渐新世-中新世序列的岩石地层学和年代研究,以及冰川事件与全球同位素事件的相关性","authors":"J. Smellie, W. Mcintosh, R. Whittle, A. Troedson, R. J. Hunt","doi":"10.1017/S095410202100033X","DOIUrl":null,"url":null,"abstract":"Abstract King George Island (South Shetland Islands, Antarctic Peninsula) is renowned for its terrestrial palaeoenvironmental record, which includes evidence for potentially up to four Cenozoic glacial periods. An advantage of the glacigenic outcrops on the island is that they are associated with volcanic formations that can be isotopically dated. As a result of a new mapping and chronological study, it can now be shown that the published stratigraphy and ages of many geological units on eastern King George Island require major revision. The Polonez Glaciation is dated as c. 26.64 ± 1.43 Ma (Late Oligocene (Chattian Stage)) and includes the outcrops previously considered as evidence for an Eocene glacial ('Krakow Glaciation'). It was succeeded by two important volcanic episodes (Boy Point and Cinder Spur formations) formed during a relatively brief interval (< 2 Ma), which also erupted within the Oligocene Chattian Stage. The Melville Glaciation is dated as c. 21–22 Ma (probably 21.8 Ma; Early Miocene (Aquitanian Stage)), and the Legru Glaciation is probably ≤ c. 10 Ma (Late Miocene or younger). As a result of this study, the Polonez and Melville glaciations can now be correlated with increased confidence with the Oi2b and Mi1a isotope zones, respectively, and thus represent major glacial episodes.","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"33 1","pages":"502 - 532"},"PeriodicalIF":2.0000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A lithostratigraphical and chronological study of Oligocene-Miocene sequences on eastern King George Island, South Shetland Islands (Antarctica), and correlation of glacial episodes with global isotope events\",\"authors\":\"J. Smellie, W. Mcintosh, R. Whittle, A. Troedson, R. J. Hunt\",\"doi\":\"10.1017/S095410202100033X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract King George Island (South Shetland Islands, Antarctic Peninsula) is renowned for its terrestrial palaeoenvironmental record, which includes evidence for potentially up to four Cenozoic glacial periods. An advantage of the glacigenic outcrops on the island is that they are associated with volcanic formations that can be isotopically dated. As a result of a new mapping and chronological study, it can now be shown that the published stratigraphy and ages of many geological units on eastern King George Island require major revision. The Polonez Glaciation is dated as c. 26.64 ± 1.43 Ma (Late Oligocene (Chattian Stage)) and includes the outcrops previously considered as evidence for an Eocene glacial ('Krakow Glaciation'). It was succeeded by two important volcanic episodes (Boy Point and Cinder Spur formations) formed during a relatively brief interval (< 2 Ma), which also erupted within the Oligocene Chattian Stage. The Melville Glaciation is dated as c. 21–22 Ma (probably 21.8 Ma; Early Miocene (Aquitanian Stage)), and the Legru Glaciation is probably ≤ c. 10 Ma (Late Miocene or younger). As a result of this study, the Polonez and Melville glaciations can now be correlated with increased confidence with the Oi2b and Mi1a isotope zones, respectively, and thus represent major glacial episodes.\",\"PeriodicalId\":50972,\"journal\":{\"name\":\"Antarctic Science\",\"volume\":\"33 1\",\"pages\":\"502 - 532\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antarctic Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/S095410202100033X\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antarctic Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/S095410202100033X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A lithostratigraphical and chronological study of Oligocene-Miocene sequences on eastern King George Island, South Shetland Islands (Antarctica), and correlation of glacial episodes with global isotope events
Abstract King George Island (South Shetland Islands, Antarctic Peninsula) is renowned for its terrestrial palaeoenvironmental record, which includes evidence for potentially up to four Cenozoic glacial periods. An advantage of the glacigenic outcrops on the island is that they are associated with volcanic formations that can be isotopically dated. As a result of a new mapping and chronological study, it can now be shown that the published stratigraphy and ages of many geological units on eastern King George Island require major revision. The Polonez Glaciation is dated as c. 26.64 ± 1.43 Ma (Late Oligocene (Chattian Stage)) and includes the outcrops previously considered as evidence for an Eocene glacial ('Krakow Glaciation'). It was succeeded by two important volcanic episodes (Boy Point and Cinder Spur formations) formed during a relatively brief interval (< 2 Ma), which also erupted within the Oligocene Chattian Stage. The Melville Glaciation is dated as c. 21–22 Ma (probably 21.8 Ma; Early Miocene (Aquitanian Stage)), and the Legru Glaciation is probably ≤ c. 10 Ma (Late Miocene or younger). As a result of this study, the Polonez and Melville glaciations can now be correlated with increased confidence with the Oi2b and Mi1a isotope zones, respectively, and thus represent major glacial episodes.
期刊介绍:
Antarctic Science provides a truly international forum for the broad spread of studies that increasingly characterise scientific research in the Antarctic. Whilst emphasising interdisciplinary work, the journal publishes papers from environmental management to biodiversity, from volcanoes to icebergs, and from oceanography to the upper atmosphere. No other journal covers such a wide range of Antarctic scientific studies. The journal attracts papers from all countries currently undertaking Antarctic research. It publishes both review and data papers with no limits on length, two-page short notes on technical developments and recent discoveries, and book reviews. These, together with an editorial discussing broader aspects of science, provide a rich and varied mixture of items to interest researchers in all areas of science. There are no page charges, or charges for colour, to authors publishing in the Journal. One issue each year is normally devoted to a specific theme or papers from a major meeting.