基于Twitter的Sembako(BPNT)程序情感分析的优化

Q3 Engineering
M. Noor, W. Gata, R. Risnandar, Fakhrudin Fakhrudin, Anisah Novitarani
{"title":"基于Twitter的Sembako(BPNT)程序情感分析的优化","authors":"M. Noor, W. Gata, R. Risnandar, Fakhrudin Fakhrudin, Anisah Novitarani","doi":"10.37385/jaets.v4i1.1006","DOIUrl":null,"url":null,"abstract":"Food Assistance Program (Program Sembako) is a development of the Non-Cash Food Assistance (BPNT) program which has been implemented by the Ministry of Social Affairs since 2017, namely of food assistance in the form of non-cash from the government which is given to Beneficiary Families (KPM) every month through an electronic account mechanism that is used only to buy food in food traders/e-warong in collaboration with banks. Twitter social media has now become one of the places to disseminate information about the Program Sembako/BPNT. This case study uses text mining techniques with the support vector machine (SVM), Naïve Bayes (NB) and K-Nearest Neighbor (k-NN) methods which aims to classify public sentiment towards the Program Sembako/BPNT on Twitter. The dataset used is tweets in Indonesian with the keywords “BPNT” and “Kartu Sembako” with a total dataset of 1,094 tweets. Text mining, transformation, tokenize, stemming and classification, etc. A useful technique for constructing sentiment classification and analysis. RapidMiner and Gataframework are also used to help create sentiment analysis to measure classification values. The results obtained by optimization using Particle Swam Optimization (PSO) using the support vector machine (SVM) algorithm and the accuracy value obtained is 78.02%, with a precision value of 78.73%, a recall value of 82.16%, and an AUC of 0.848","PeriodicalId":34350,"journal":{"name":"Journal of Applied Engineering and Technological Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Sentiment Analysis of Program Sembako(BPNT) Based on Twitter\",\"authors\":\"M. Noor, W. Gata, R. Risnandar, Fakhrudin Fakhrudin, Anisah Novitarani\",\"doi\":\"10.37385/jaets.v4i1.1006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Food Assistance Program (Program Sembako) is a development of the Non-Cash Food Assistance (BPNT) program which has been implemented by the Ministry of Social Affairs since 2017, namely of food assistance in the form of non-cash from the government which is given to Beneficiary Families (KPM) every month through an electronic account mechanism that is used only to buy food in food traders/e-warong in collaboration with banks. Twitter social media has now become one of the places to disseminate information about the Program Sembako/BPNT. This case study uses text mining techniques with the support vector machine (SVM), Naïve Bayes (NB) and K-Nearest Neighbor (k-NN) methods which aims to classify public sentiment towards the Program Sembako/BPNT on Twitter. The dataset used is tweets in Indonesian with the keywords “BPNT” and “Kartu Sembako” with a total dataset of 1,094 tweets. Text mining, transformation, tokenize, stemming and classification, etc. A useful technique for constructing sentiment classification and analysis. RapidMiner and Gataframework are also used to help create sentiment analysis to measure classification values. The results obtained by optimization using Particle Swam Optimization (PSO) using the support vector machine (SVM) algorithm and the accuracy value obtained is 78.02%, with a precision value of 78.73%, a recall value of 82.16%, and an AUC of 0.848\",\"PeriodicalId\":34350,\"journal\":{\"name\":\"Journal of Applied Engineering and Technological Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Engineering and Technological Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37385/jaets.v4i1.1006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Engineering and Technological Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37385/jaets.v4i1.1006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

粮食援助计划(Sembako计划)是社会事务部自2017年以来实施的非现金粮食援助(BPNT)计划的发展,即政府以非现金形式提供的粮食援助,每月通过电子账户机制向受益家庭提供,该机制仅用于与银行合作在食品贸易商/e-warong购买粮食。推特社交媒体现在已经成为传播Sembako/BPNT计划信息的地方之一。本案例研究使用文本挖掘技术和支持向量机(SVM)、朴素贝叶斯(NB)和K-最近邻(K-NN)方法,旨在对推特上公众对Sembako/BPNT程序的情绪进行分类。使用的数据集是印尼语的推文,关键词为“BPNT”和“Kartu Sembako”,总数据集为1094条推文。文本挖掘、转换、标记化、词干和分类等。这是一种构建情感分类和分析的有用技术。RapidMiner和Gataframework也用于帮助创建情绪分析,以测量分类值。通过使用支持向量机(SVM)算法的粒子群优化(PSO)进行优化所获得的结果和所获得的准确度值为78.02%,精确度值为78.73%,召回率值为82.16%,AUC为0.848
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Sentiment Analysis of Program Sembako(BPNT) Based on Twitter
Food Assistance Program (Program Sembako) is a development of the Non-Cash Food Assistance (BPNT) program which has been implemented by the Ministry of Social Affairs since 2017, namely of food assistance in the form of non-cash from the government which is given to Beneficiary Families (KPM) every month through an electronic account mechanism that is used only to buy food in food traders/e-warong in collaboration with banks. Twitter social media has now become one of the places to disseminate information about the Program Sembako/BPNT. This case study uses text mining techniques with the support vector machine (SVM), Naïve Bayes (NB) and K-Nearest Neighbor (k-NN) methods which aims to classify public sentiment towards the Program Sembako/BPNT on Twitter. The dataset used is tweets in Indonesian with the keywords “BPNT” and “Kartu Sembako” with a total dataset of 1,094 tweets. Text mining, transformation, tokenize, stemming and classification, etc. A useful technique for constructing sentiment classification and analysis. RapidMiner and Gataframework are also used to help create sentiment analysis to measure classification values. The results obtained by optimization using Particle Swam Optimization (PSO) using the support vector machine (SVM) algorithm and the accuracy value obtained is 78.02%, with a precision value of 78.73%, a recall value of 82.16%, and an AUC of 0.848
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信