Ayesha Raza, Muhammad Fahad Yousaf, S. Farrukh, A. Hussain
{"title":"厚度对CO2/CH4气体在CA涂层PVDF复合膜中渗透性的影响","authors":"Ayesha Raza, Muhammad Fahad Yousaf, S. Farrukh, A. Hussain","doi":"10.1080/0371750X.2021.1880969","DOIUrl":null,"url":null,"abstract":"The aim of this work is to study the effect of membrane thickness with respect to gas permeance and tensile strength. The influence of membrane thickness on gas permeation has received little attention to date. Single layer flat sheet membrane with average thickness of 25 μm and dual layer composite membranes with variable thickness of skin layer were fabricated by coating CA/ PEG selective layer on the polyvinylidene fluoride porous support. Permeation experiments were performed with CO2 and CH4 which revealed that permeance of CO2 was pronounced compared to CH4. Highest permeance of 0.87 gas permeation unit (GPU) was obtained at 4 bar with 19.4 μm skin layer. Fourier transform infra-red spectroscopy was used to study the existence of different functional groups in the membranes. Strength of the membranes was analyzed using tensile testing machine. Scanning electron microscopy was used to study the surface structure and morphology. It was found that by reducing the membrane thickness, the permeance of CO2 and CH4 increased without compromising on membrane strength. GRAPHICAL ABSTRACT","PeriodicalId":23233,"journal":{"name":"Transactions of the Indian Ceramic Society","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0371750X.2021.1880969","citationCount":"1","resultStr":"{\"title\":\"Thickness Effect on Permeance of CO2/CH4 Gases in CA Coated PVDF Composite Membranes\",\"authors\":\"Ayesha Raza, Muhammad Fahad Yousaf, S. Farrukh, A. Hussain\",\"doi\":\"10.1080/0371750X.2021.1880969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to study the effect of membrane thickness with respect to gas permeance and tensile strength. The influence of membrane thickness on gas permeation has received little attention to date. Single layer flat sheet membrane with average thickness of 25 μm and dual layer composite membranes with variable thickness of skin layer were fabricated by coating CA/ PEG selective layer on the polyvinylidene fluoride porous support. Permeation experiments were performed with CO2 and CH4 which revealed that permeance of CO2 was pronounced compared to CH4. Highest permeance of 0.87 gas permeation unit (GPU) was obtained at 4 bar with 19.4 μm skin layer. Fourier transform infra-red spectroscopy was used to study the existence of different functional groups in the membranes. Strength of the membranes was analyzed using tensile testing machine. Scanning electron microscopy was used to study the surface structure and morphology. It was found that by reducing the membrane thickness, the permeance of CO2 and CH4 increased without compromising on membrane strength. GRAPHICAL ABSTRACT\",\"PeriodicalId\":23233,\"journal\":{\"name\":\"Transactions of the Indian Ceramic Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0371750X.2021.1880969\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Indian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/0371750X.2021.1880969\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Indian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/0371750X.2021.1880969","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Thickness Effect on Permeance of CO2/CH4 Gases in CA Coated PVDF Composite Membranes
The aim of this work is to study the effect of membrane thickness with respect to gas permeance and tensile strength. The influence of membrane thickness on gas permeation has received little attention to date. Single layer flat sheet membrane with average thickness of 25 μm and dual layer composite membranes with variable thickness of skin layer were fabricated by coating CA/ PEG selective layer on the polyvinylidene fluoride porous support. Permeation experiments were performed with CO2 and CH4 which revealed that permeance of CO2 was pronounced compared to CH4. Highest permeance of 0.87 gas permeation unit (GPU) was obtained at 4 bar with 19.4 μm skin layer. Fourier transform infra-red spectroscopy was used to study the existence of different functional groups in the membranes. Strength of the membranes was analyzed using tensile testing machine. Scanning electron microscopy was used to study the surface structure and morphology. It was found that by reducing the membrane thickness, the permeance of CO2 and CH4 increased without compromising on membrane strength. GRAPHICAL ABSTRACT
期刊介绍:
Transactions of the Indian Ceramic Society is a quarterly Journal devoted to current scientific research, technology and industry-related news on glass and ceramics. The Journal covers subjects such as the chemical, mechanical, optical, electronic and spectroscopic properties of glass and ceramics, and characterization of materials belonging to this family.
The Editor invites original research papers, topical reviews, opinions and achievements, as well as industry profiles for publication. The contributions should be accompanied by abstracts, keywords and other details, as outlined in the Instructions for Authors section. News, views and other comments on activities of specific industries and organizations, and also analyses of industrial scenarios are also welcome.