函数域算术表示的密度

IF 0.9 Q2 MATHEMATICS
H. Esnault, M. Kerz
{"title":"函数域算术表示的密度","authors":"H. Esnault, M. Kerz","doi":"10.46298/epiga.2022.6568","DOIUrl":null,"url":null,"abstract":"We propose a conjecture on the density of arithmetic points in the\ndeformation space of representations of the \\'etale fundamental group in\npositive characteristic. This? conjecture has applications to \\'etale\ncohomology theory, for example it implies a Hard Lefschetz conjecture. We prove\nthe density conjecture in tame degree two for the curve $\\mathbb{P}^1\\setminus\n\\{0,1,\\infty\\}$. v2: very small typos corrected.v3: final. Publication in\nEpiga.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Density of Arithmetic Representations of Function Fields\",\"authors\":\"H. Esnault, M. Kerz\",\"doi\":\"10.46298/epiga.2022.6568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a conjecture on the density of arithmetic points in the\\ndeformation space of representations of the \\\\'etale fundamental group in\\npositive characteristic. This? conjecture has applications to \\\\'etale\\ncohomology theory, for example it implies a Hard Lefschetz conjecture. We prove\\nthe density conjecture in tame degree two for the curve $\\\\mathbb{P}^1\\\\setminus\\n\\\\{0,1,\\\\infty\\\\}$. v2: very small typos corrected.v3: final. Publication in\\nEpiga.\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2022.6568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2022.6568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了一个关于算术点密度的猜想,该猜想是关于三个基本群的正性特征的表示的形成空间中的算术点密度。这该猜想在逻辑同源性理论中有应用,例如它隐含了Hard-Lefschetz猜想。我们证明了曲线$\mathbb{P}^1\setminus\{0,1,\infty\}$的二阶密度猜想。v2:更正了非常小的拼写错误。v3:最终版本。在Epiga出版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density of Arithmetic Representations of Function Fields
We propose a conjecture on the density of arithmetic points in the deformation space of representations of the \'etale fundamental group in positive characteristic. This? conjecture has applications to \'etale cohomology theory, for example it implies a Hard Lefschetz conjecture. We prove the density conjecture in tame degree two for the curve $\mathbb{P}^1\setminus \{0,1,\infty\}$. v2: very small typos corrected.v3: final. Publication in Epiga.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
19
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信