{"title":"随机时滞微分方程组随机θ格式的保渐近均方稳定性","authors":"O. F. Rouz","doi":"10.22034/CMDE.2020.32139.1502","DOIUrl":null,"url":null,"abstract":"This article examines asymptotic mean-square stability analysis of stochastic linear theta (SLT) scheme for n-dimensional stochastic delay differential equations (SDDEs). We impose some conditions on drift and diffusion terms, which admit that the diffusion coefficient can be highly nonlinear and does not necessarily satisfy a linear growth or global Lipschitz condition. We prove that the proposed scheme is asymptotically mean square stable if the employed stepsize is smaller than a given and easily computable upper bound. In particular, based on our investigation in the case θ ∈[ 1/2 , 1], the stepsize is arbitrary. Eventually, numerical examples are given to demonstrate the effectiveness of our work.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":"8 1","pages":"468-479"},"PeriodicalIF":1.1000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Preserving asymptotic mean-square stability of stochastic theta scheme for systems of stochastic delay differential equations\",\"authors\":\"O. F. Rouz\",\"doi\":\"10.22034/CMDE.2020.32139.1502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article examines asymptotic mean-square stability analysis of stochastic linear theta (SLT) scheme for n-dimensional stochastic delay differential equations (SDDEs). We impose some conditions on drift and diffusion terms, which admit that the diffusion coefficient can be highly nonlinear and does not necessarily satisfy a linear growth or global Lipschitz condition. We prove that the proposed scheme is asymptotically mean square stable if the employed stepsize is smaller than a given and easily computable upper bound. In particular, based on our investigation in the case θ ∈[ 1/2 , 1], the stepsize is arbitrary. Eventually, numerical examples are given to demonstrate the effectiveness of our work.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":\"8 1\",\"pages\":\"468-479\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.32139.1502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.32139.1502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Preserving asymptotic mean-square stability of stochastic theta scheme for systems of stochastic delay differential equations
This article examines asymptotic mean-square stability analysis of stochastic linear theta (SLT) scheme for n-dimensional stochastic delay differential equations (SDDEs). We impose some conditions on drift and diffusion terms, which admit that the diffusion coefficient can be highly nonlinear and does not necessarily satisfy a linear growth or global Lipschitz condition. We prove that the proposed scheme is asymptotically mean square stable if the employed stepsize is smaller than a given and easily computable upper bound. In particular, based on our investigation in the case θ ∈[ 1/2 , 1], the stepsize is arbitrary. Eventually, numerical examples are given to demonstrate the effectiveness of our work.