O.O. George, J. Olaleru, J. Adeniran, Temitope Gbolahan Jaiyeola
{"title":"关于一类幂相关LCC环路","authors":"O.O. George, J. Olaleru, J. Adeniran, Temitope Gbolahan Jaiyeola","doi":"10.17398/2605-5686.37.2.185","DOIUrl":null,"url":null,"abstract":"Let LWPC denote the identity (xy · x) · xz = x((yx · x)z), and RWPC the mirror identity. Phillips proved that a loop satisfies LWPC and RWPC if and only if it is a WIP PACC loop. Here, it is proved that a loop Q fulfils LWPC if and only if it is a left conjugacy closed (LCC) loop that fulfils the identity (xy · x)x = x(yx · x). Similarly, RWPC is equivalent to RCC and x(x · yx) = (x · xy)x. If a loop satisfies LWPC or RWPC, then it is power associative (PA). The smallest nonassociative LWPC-loop was found to be unique and of order 6 while there are exactly 6 nonassociative LWPC-loops of order 8 up to isomorphism. Methods of construction of nonassociative LWPC-loops were developed.","PeriodicalId":33668,"journal":{"name":"Extracta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a class of power associative LCC-loops\",\"authors\":\"O.O. George, J. Olaleru, J. Adeniran, Temitope Gbolahan Jaiyeola\",\"doi\":\"10.17398/2605-5686.37.2.185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let LWPC denote the identity (xy · x) · xz = x((yx · x)z), and RWPC the mirror identity. Phillips proved that a loop satisfies LWPC and RWPC if and only if it is a WIP PACC loop. Here, it is proved that a loop Q fulfils LWPC if and only if it is a left conjugacy closed (LCC) loop that fulfils the identity (xy · x)x = x(yx · x). Similarly, RWPC is equivalent to RCC and x(x · yx) = (x · xy)x. If a loop satisfies LWPC or RWPC, then it is power associative (PA). The smallest nonassociative LWPC-loop was found to be unique and of order 6 while there are exactly 6 nonassociative LWPC-loops of order 8 up to isomorphism. Methods of construction of nonassociative LWPC-loops were developed.\",\"PeriodicalId\":33668,\"journal\":{\"name\":\"Extracta Mathematicae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extracta Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17398/2605-5686.37.2.185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracta Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17398/2605-5686.37.2.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Let LWPC denote the identity (xy · x) · xz = x((yx · x)z), and RWPC the mirror identity. Phillips proved that a loop satisfies LWPC and RWPC if and only if it is a WIP PACC loop. Here, it is proved that a loop Q fulfils LWPC if and only if it is a left conjugacy closed (LCC) loop that fulfils the identity (xy · x)x = x(yx · x). Similarly, RWPC is equivalent to RCC and x(x · yx) = (x · xy)x. If a loop satisfies LWPC or RWPC, then it is power associative (PA). The smallest nonassociative LWPC-loop was found to be unique and of order 6 while there are exactly 6 nonassociative LWPC-loops of order 8 up to isomorphism. Methods of construction of nonassociative LWPC-loops were developed.