{"title":"马歇尔试验评价废玻璃在沥青混凝土中的作用","authors":"O. Ogundipe, E. S. Nnochiri","doi":"10.30765/er.40.2.04","DOIUrl":null,"url":null,"abstract":"The study investigates the use of waste glass as filler in asphalt concrete. Waste glass constitutes a significant proportion of the waste generated in both developed and developing countries. Successful utilization of the waste glass in asphalt will reduce the problem faced by environmental agencies at ensuring safe disposal of the non-biodegradable waste and may improve the asphalt properties. In the study, a waste glass in form of a filler was introduced into the asphalt mix at 8%, 10%, 12%, 14%, 16%, 18% and 20% of the total mix. The asphalt concrete samples with and without waste glass as filler were subjected to the Marshall test to determine the stability, flow, air voids, void in mix aggregate and void filled with bitumen. The Marshall test results show that stability increases when increasing glass filler up to 18%, although the values were lower than of the asphalt concrete without waste glass. This implies improved resistance to fatigue for higher waste glass content. Also, the flow increases with increasing glass filler, which implies the resistance to permanent deformation which did not improve. Generally, the introduction of waste glass in the asphalt concrete is environmentally friendly, and it will aid the sustainable management of waste glass.","PeriodicalId":44022,"journal":{"name":"Engineering Review","volume":"40 1","pages":"24-33"},"PeriodicalIF":0.7000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.30765/er.40.2.04","citationCount":"8","resultStr":"{\"title\":\"Evaluation of the effects of waste glass in asphalt concrete using the Marshall test\",\"authors\":\"O. Ogundipe, E. S. Nnochiri\",\"doi\":\"10.30765/er.40.2.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study investigates the use of waste glass as filler in asphalt concrete. Waste glass constitutes a significant proportion of the waste generated in both developed and developing countries. Successful utilization of the waste glass in asphalt will reduce the problem faced by environmental agencies at ensuring safe disposal of the non-biodegradable waste and may improve the asphalt properties. In the study, a waste glass in form of a filler was introduced into the asphalt mix at 8%, 10%, 12%, 14%, 16%, 18% and 20% of the total mix. The asphalt concrete samples with and without waste glass as filler were subjected to the Marshall test to determine the stability, flow, air voids, void in mix aggregate and void filled with bitumen. The Marshall test results show that stability increases when increasing glass filler up to 18%, although the values were lower than of the asphalt concrete without waste glass. This implies improved resistance to fatigue for higher waste glass content. Also, the flow increases with increasing glass filler, which implies the resistance to permanent deformation which did not improve. Generally, the introduction of waste glass in the asphalt concrete is environmentally friendly, and it will aid the sustainable management of waste glass.\",\"PeriodicalId\":44022,\"journal\":{\"name\":\"Engineering Review\",\"volume\":\"40 1\",\"pages\":\"24-33\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.30765/er.40.2.04\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30765/er.40.2.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30765/er.40.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluation of the effects of waste glass in asphalt concrete using the Marshall test
The study investigates the use of waste glass as filler in asphalt concrete. Waste glass constitutes a significant proportion of the waste generated in both developed and developing countries. Successful utilization of the waste glass in asphalt will reduce the problem faced by environmental agencies at ensuring safe disposal of the non-biodegradable waste and may improve the asphalt properties. In the study, a waste glass in form of a filler was introduced into the asphalt mix at 8%, 10%, 12%, 14%, 16%, 18% and 20% of the total mix. The asphalt concrete samples with and without waste glass as filler were subjected to the Marshall test to determine the stability, flow, air voids, void in mix aggregate and void filled with bitumen. The Marshall test results show that stability increases when increasing glass filler up to 18%, although the values were lower than of the asphalt concrete without waste glass. This implies improved resistance to fatigue for higher waste glass content. Also, the flow increases with increasing glass filler, which implies the resistance to permanent deformation which did not improve. Generally, the introduction of waste glass in the asphalt concrete is environmentally friendly, and it will aid the sustainable management of waste glass.
期刊介绍:
Engineering Review is an international journal designed to foster the exchange of ideas and transfer of knowledge between scientists and engineers involved in various engineering sciences that deal with investigations related to design, materials, technology, maintenance and manufacturing processes. It is not limited to the specific details of science and engineering but is instead devoted to a very wide range of subfields in the engineering sciences. It provides an appropriate resort for publishing the papers covering prior applications – based on the research topics comprising the entire engineering spectrum. Topics of particular interest thus include: mechanical engineering, naval architecture and marine engineering, fundamental engineering sciences, electrical engineering, computer sciences and civil engineering. Manuscripts addressing other issues may also be considered if they relate to engineering oriented subjects. The contributions, which may be analytical, numerical or experimental, should be of significance to the progress of mentioned topics. Papers that are merely illustrations of established principles or procedures generally will not be accepted. Occasionally, the magazine is ready to publish high-quality-selected papers from the conference after being renovated, expanded and written in accordance with the rules of the magazine. The high standard of excellence for any of published papers will be ensured by peer-review procedure. The journal takes into consideration only original scientific papers.